01 | 二进制:不了解计算机的源头,你学什么编程

我们都知道,计算机的起源是数学中的二进制计数法。可以说,没有二进制,就没有如今的计算机系统。那什么是二进制呢?为什么计算机要使用二进制,而不是我们日常生活中的十进制呢?如何在代码中操作二进制呢?专栏开始,我们就从计算机认知的起源——二进制出发,讲讲它在计算机中的“玄机”。

什么是二进制计数法?

为了让你更好地理解二进制计数法,我们先来简单地回顾一下人类计数的发展史。

原始时代,人类用路边的小石子,来统计放牧归来的羊只数量,这表明我们很早就产生了计数的意识。后来,罗马人用手指作为计数的工具,并在羊皮上画出Ⅰ、Ⅱ、Ⅲ来代替手指的数量。表示一只手时,就写成“Ⅴ”形,表示两只手时,就画成“ⅤⅤ”形等等。

公元 3 世纪左右,印度数学家(也有说法是阿拉伯人)发明了阿拉伯数字。阿拉伯数字由从 0 到 9 这样 10 个计数符号组成,并采取进位制法,高位在左,低位在右,从左往右书写。由于阿拉伯数字本身笔画简单,演算便利,因此它们逐渐在各国流行起来,成为世界通用的数字。

日常生活中,我们广泛使用的十进制计数法,也是基于阿拉伯数字的。这也是十进制计数法的基础。因此,相对其他计数方法,十进制最容易被我们所理解。

让我们来观察一个数字:2871。

img

其中 ^ 表示幂或次方运算。十进制的数位(千位、百位、十位等)全部都是 10^n 的形式。需要特别注意的是,任何非 0 数字的 0 次方均为 1。在这个新的表示式里,10 被称为十进制计数法的基数,也是十进制中“十”的由来。这个我想你应该好理解,因为这和我们日常生活的习惯是统一的。

明白了十进制,我们再试着用类似的思路来理解二进制的定义。我以二进制数字 110101 为例,解释给你听。我们先来看,这里 110101 究竟代表了十进制中的数字几呢?

刚才我们说了,十进制计数是使用 10 作为基数,那么二进制就是使用 2 作为基数,类比过来,二进制的数位就是 2^n 的形式。如果需要将这个数字转化为人们易于理解的十进制,我们就可以这样来计算:

img

按照这个思路,我们还可以推导出八进制(以 8 为基数)、十六进制(以 16 为基数)等等计数法,很简单,我在这里就不赘述了。

至此,你应该已经理解了什么是二进制。但是仅有数学的理论知识是不够的,结合相关的代码实践,相信你会有更深刻的印象。

基于此,我们来看看二进制和十进制数在 Java 语言中是如何互相转换的,并验证一下我们之前的推算。我这里使用的是 Java 语言来实现的,其他主流的编程语言实现方式都是类似的。

这段代码的实现采用了 Java 的 BigInteger 类及其 API 函数,我都加了代码注释,并且穿插一些解释,你应该可以看懂。

首先,我们引入 BigInteger 包,通过它和 Integer 类的 API 函数进行二进制和十进制的互相转换。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import java.math.BigInteger;

public class Lesson1_1 {

/**

* @Description: 十进制转换成二进制
* @param decimalSource
* @return String
*/
public static String decimalToBinary(int decimalSource) {
// 转换成 BigInteger 类型,默认是十进制
BigInteger bi = new BigInteger(String.valueOf(decimalSource));
return bi.toString(2); // 参数 2 指定的是转化成二进制
}

/**
* @Description: 二进制转换成十进制
* @param binarySource
* @return int
*/
public static int binaryToDecimal(String binarySource) {
// 转换为BigInteger 类型,参数 2 指定的是二进制
BigInteger bi = new BigInteger(binarySource, 2);
return Integer.parseInt(bi.toString()); // 默认转换成十进制
}
}

然后,我们通过一个十进制数和一个二进制数,来验证一下上述代码的正确性。

1
2
3
4
5
6
7
public static void main(String[] args) {     
int a = 53;
String b = "110101";
System.out.println(String.format(" 数字 %d 的二进制是 %s", a, Lesson1_1.decimalToBinary(a))); // 获取十进制数 53 的二进制数
System.out.println(String.format(" 数字 %s 的十进制是 %d", b, Lesson1_1.binaryToDecimal(b))); // 获取二进制数 110101 的十进制数

}

这段代码运行的结果是:十进制数字 53 的二进制是 110101,二进制数字 110101 的十进制是 53。

好了,关于十进制和二进制的概念以及进制之间的相互转换,你应该都很清楚了。既然有十进制,又有二进制,你可能就要问了,为啥计算机使用的是二进制而不是十进制呢?

计算机为什么使用二进制?

我觉得,计算机使用二进制和现代计算机系统的硬件实现有关。组成计算机系统的逻辑电路通常只有两个状态,即开关的接通与断开。

断开的状态我们用“0”来表示,接通的状态用“1”来表示。由于每位数据只有断开与接通两种状态,所以即便系统受到一定程度的干扰时,它仍然能够可靠地分辨出数字是“0”还是“1”。因此,在具体的系统实现中,二进制的数据表达具有抗干扰能力强、可靠性高的优点。

相比之下,如果用十进制设计具有 10 种状态的电路,情况就会非常复杂,判断状态的时候出错的几率就会大大提高。

另外,二进制也非常适合逻辑运算。逻辑运算中的“真”和“假”,正好与二进制的“0”和“1”两个数字相对应。逻辑运算中的加法(“或”运算)、乘法(“与”运算)以及否定(“非”运算)都可以通过“0”和“1”的加法、乘法和减法来实现。

二进制的位操作

了解了现代计算机是基于二进制的,我们就来看看,计算机语言中针对二进制的位操作。这里的位操作,也叫作位运算,就是直接对内存中的二进制位进行操作。常见的二进制位操作包括向左移位和向右移位的移位操作,以及“或”“与”“异或”的逻辑操作。下面我们一一来看。

向左移位

我们先来看向左移位。

二进制 110101 向左移一位,就是在末尾添加一位 0,因此 110101 就变成了 1101010。请注意,这里讨论的是数字没有溢出的情况。

所谓数字溢出,就是二进制数的位数超过了系统所指定的位数。目前主流的系统都支持至少 32 位的整型数字,而 1101010 远未超过 32 位,所以不会溢出。如果进行左移操作的二进制已经超出了 32 位,左移后数字就会溢出,需要将溢出的位数去除。

img

在这个例子中,如果将 1101010 换算为十进制,就是 106,你有没有发现,106 正好是 53 的 2 倍。所以,我们可以得出一个结论:二进制左移一位,其实就是将数字翻倍

向右移位

接下来我们来看向右移位。

二进制 110101 向右移一位,就是去除末尾的那一位,因此 110101 就变成了 11010(最前面的 0 可以省略)。我们将 11010 换算为十进制,就是 26,正好是 53 除以 2 的整数商。所以二进制右移一位,就是将数字除以 2 并求整数商的操作

img

下面我们来看看,用代码如何进行移位操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import java.math.BigInteger;

public class Lesson1_2 {

/**
* @Description: 向左移位
* @param num- 等待移位的十进制数, m- 向左移的位数
* @return int- 移位后的十进制数
*/
public static int leftShift(int num, int m) {
return num << m;
}

/**
* @Description: 向右移位
* @param num- 等待移位的十进制数, m- 向右移的位数
* @return int- 移位后的十进制数
*/
public static int rightShift(int num, int m) {
return num >>> m;
}

}

然后,我们用一段测试代码验证下结果。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static void main(String[] args) {     

int num = 53;
int m = 1;
System.out.println(String.format(" 数字 %d 的二进制向左移 %d 位是 %d", num, m, Lesson1_2.leftShift(num, m))); // 测试向左移位
System.out.println(String.format(" 数字 %d 的二进制向右移 %d 位是 %d", num, m, Lesson1_2.rightShift(num, m))); // 测试向右移位

System.out.println();

m = 3;
System.out.println(String.format(" 数字 %d 的二进制向左移 %d 位是 %d", num, m, Lesson1_2.leftShift(num, m))); // 测试向左移位
System.out.println(String.format(" 数字 %d 的二进制向右移 %d 位是 %d", num, m, Lesson1_2.rightShift(num, m))); // 测试向右移位

}

这段代码的运行结果是:数字 53 向左移 1 位是 106;数字 53 向右移 1 位是 26。数字 53 向左移 3 位是 424,数字 53 向右移 3 位是 6。

我来解释一下。其中,移位 1 次相当于乘以或除以 2,而移位 3 次就相当于乘以或除以 8(即 2 的 3 次方)。细心的话,你可能已经发现,Java 中的左移位和右移位的表示是不太一样的。

左移位是 <<,那右移位为什么是 >>> 而不是 >> 呢?实际上,>> 也是右移操作。简单来说,之所以有这两种表达方式,根本原因是 Java 的二进制数值中最高一位是符号位。这里我给你详细解释一下。

当符号位为 0 时,表示该数值为正数;当符号位为 1 时,表示该数值为负数。我们以 32 位 Java 为例,数字 53 的二进制为 110101,从右往左数的第 32 位是 0,表示该数是正数,只是通常我们都将其省略。

img

如果数字是 -53 呢?那么第 32 位就不是 0,而是 1。请注意我这里列出的是补码。

img

那么这个时候向右移位,就会产生一个问题:对于符号位(特别是符号位为 1 的时候),我们是否也需要将其右移呢?因此,Java 里定义了两种右移,逻辑右移算术右移。逻辑右移 1 位,左边补 0 即可。

img

算术右移时保持符号位不变,除符号位之外的右移一位并补符号位 1。补的 1 仍然在符号位之后。

img

逻辑右移在 Java 和 Python 语言中使用 >>> 表示,而算术右移使用 >> 表示。如果你有兴趣,可以自己编码尝试一下,看看这两种操作符输出的结果有何不同。

在 C 或 C++ 语言中,逻辑右移和算数右移共享同一个运算符 >>。那么,编译器是如何决定使用逻辑右移还是算数右移呢?答案是,取决于运算数的类型。如果运算数类型是 unsigned,则采用逻辑右移;而是 signed,则采用算数右移。如果你针对 unsigned 类型的数据使用算数右移,或者针对 signed 类型的数据使用逻辑右移,那么你首先需要进行类型的转换。

由于左移位无需考虑高位补 1 还是补 0(符号位可能为 1 或 0),所以不需要区分逻辑左移和算术左移。

位的“或”

我们刚才说了,二进制的“1”和“0”分别对应逻辑中的“真”和“假”,因此可以针对位进行逻辑操作。

逻辑“或”的意思是,参与操作的位中只要有一个位是 1,那么最终结果就是 1,也就是“真”。如果我们将二进制 110101 和 100011 的每一位对齐,进行按位的“或”操作,就会得到 110111。

img

位的“与”

同理,我们也可以针对位进行逻辑“与”的操作。“与”的意思是,参与操作的位中必须全都是 1,那么最终结果才是 1(真),否则就为 0(假)。如果我们将二进制 110101 和 100011 的每一位对齐,进行按位的“与”操作,就会得到 100001。

img

位的“异或”

逻辑“异或”和“或”有所不同,它具有排异性,也就是说如果参与操作的位相同,那么最终结果就为 0(假),否则为 1(真)。所以,如果要得到 1,参与操作的两个位必须不同,这就是此处“异”的含义。我们将二进制 110101 和 100011 的每一位对齐,进行按位的“异或”操作,可以得到结果是 10110。

img

我总结一下,“异或”操作的本质其实就是,所有数值和自身进行按位的“异或”操作之后都为 0。而且要通过“异或”操作得到 0,也必须通过两个相同的数值进行按位“异或”。这表明了两个数值按位“异或”结果为 0,是这两个数值相等的必要充分条件,可以作为判断两个变量是否相等的条件。

接下来,我们来学习一下,在代码中如何实现二进制的逻辑操作。Java 中使用|表示按位的“或”,& 表示按位“与”,^ 表示按位“异或”。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import java.math.BigInteger;

public class Lesson1_3 {

/**
* @Description: 二进制按位“或”的操作
* @param num1- 第一个数字,num2- 第二个数字
* @return 二进制按位“或”的结果
*/
public static int or(int num1, int num2) {

return (num1 | num2);

}

/**
* @Description: 二进制按位“与”的操作
* @param num1- 第一个数字,num2- 第二个数字
* @return 二进制按位“与”的结果
*/
public static int and(int num1, int num2) {

return (num1 & num2);

}

/**

* @Description: 二进制按位“异或”的操作
* @param num1- 第一个数字,num2- 第二个数字
* @return 二进制按位“异或”的结果
*/

public static int xor(int num1, int num2) {

return (num1 ^ num2);

}


}

同样,我们写一段测试代码,验证一下上面三个函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public static void main(String[] args) {

int a = 53;
int b = 35;

System.out.println(String.format(" 数字 %d(%s) 和数字 %d(%s) 的按位‘或’结果是 %d(%s)",
a, decimalToBinary(a), b, decimalToBinary(b), Lesson2_3.or(a, b), decimalToBinary(Lesson1_3.or(a, b)))); // 获取十进制数 53 和 35 的按位“或”

System.out.println(String.format(" 数字 %d(%s) 和数字 %d(%s) 的按位‘与’结果是 %d(%s)",
a, decimalToBinary(a), b, decimalToBinary(b), Lesson2_3.and(a, b), decimalToBinary(Lesson1_3.and(a, b)))); // 获取十进制数 53 和 35 的按位“与”

System.out.println(String.format(" 数字 %d(%s) 和数字 %d(%s) 的按位‘异或’结果是 %d(%s)",
a, decimalToBinary(a), a, decimalToBinary(a), Lesson2_3.xor(a, a), decimalToBinary(Lesson1_3.xor(a, a)))); // 获取十进制数 53 和 35 的按位“异或”

}

这段代码的运行结果是:数字 53(110101) 和数字 35(100011) 的按位‘或’结果是 55(110111),数字 53(110101) 和数字 35(100011) 的按位‘与’结果是 33(100001),数字 53(110101) 和数字 53(110101) 的按位‘异或’结果是 0(0)。

小结

今天我们聊了二进制,你可能会问:学习二进制究竟有什么用呢?平时的编程中,我们好像并没有使用相关的知识啊?确实,目前的高级语言可以帮助我们将人类的思维逻辑转换为使用 0 和 1 的机器语言,我们不用再为此操心了。但是,二进制作为现代计算机体系的基石,这些基础的概念和操作,你一定要非常了解。

二进制贯穿在很多常用的概念和思想中,例如逻辑判断、二分法、二叉树等等。逻辑判断中的真假值就是用二进制的 1 和 0 来表示的;二分法和二叉树都是把要处理的问题一分为二,正好也可以通过二进制的 1 和 0 来表示。因此,理解了二进制,你就能更加容易地理解很多计算机的数据结构和算法,也为我们后面的学习打下基础。

img

思考题

如果不使用 Java 语言自带的 BigInteger 类,我们还有什么方法来实现十进制到二进制的转换呢?(提示:可以使用二进制的移位和按位逻辑操作来实现。)

极客时间版权所有: https://time.geekbang.org/column/article/71840

31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?

上一节我们讲了图的表示方法,讲到如何用有向图、无向图来表示一个社交网络。在社交网络中,有一个六度分割理论,具体是说,你与世界上的另一个人间隔的关系不会超过六度,也就是说平均只需要六步就可以联系到任何两个互不相识的人。

一个用户的一度连接用户很好理解,就是他的好友,二度连接用户就是他好友的好友,三度连接用户就是他好友的好友的好友。在社交网络中,我们往往通过用户之间的连接关系,来实现推荐“可能认识的人”这么一个功能。今天的开篇问题就是,给你一个用户,如何找出这个用户的所有三度(其中包含一度、二度和三度)好友关系?

这就要用到今天要讲的深度优先和广度优先搜索算法。

什么是“搜索”算法?

我们知道,算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。这是因为,图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”。

图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。具体方法有很多,比如今天要讲的两种最简单、最“暴力”的深度优先、广度优先搜索,还有 A、IDA 等启发式搜索算法。

我们上一节讲过,图有两种主要存储方法,邻接表和邻接矩阵。今天我会用邻接表来存储图。

我这里先给出图的代码实现。需要说明一下,深度优先搜索算法和广度优先搜索算法,既可以用在无向图,也可以用在有向图上。在今天的讲解中,我都针对无向图来讲解。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Graph { // 无向图
private int v; // 顶点的个数
private LinkedList<Integer> adj[]; // 邻接表

public Graph(int v) {
this.v = v;
adj = new LinkedList[v];
for (int i=0; i<v; ++i) {
adj[i] = new LinkedList<>();
}
}

public void addEdge(int s, int t) { // 无向图一条边存两次
adj[s].add(t);
adj[t].add(s);
}
}

广度优先搜索(BFS)

广度优先搜索(Breadth-First-Search),我们平常都把简称为 BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。理解起来并不难,所以我画了一张示意图,你可以看下。

img

尽管广度优先搜索的原理挺简单,但代码实现还是稍微有点复杂度。所以,我们重点讲一下它的代码实现。

这里面,bfs() 函数就是基于之前定义的,图的广度优先搜索的代码实现。其中 s 表示起始顶点,t 表示终止顶点。我们搜索一条从 s 到 t 的路径。实际上,这样求得的路径就是从 s 到 t 的最短路径。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public void bfs(int s, int t) {
if (s == t) return;
boolean[] visited = new boolean[v];
visited[s]=true;
Queue<Integer> queue = new LinkedList<>();
queue.add(s);
int[] prev = new int[v];
for (int i = 0; i < v; ++i) {
prev[i] = -1;
}
while (queue.size() != 0) {
int w = queue.poll();
for (int i = 0; i < adj[w].size(); ++i) {
int q = adj[w].get(i);
if (!visited[q]) {
prev[q] = w;
if (q == t) {
print(prev, s, t);
return;
}
visited[q] = true;
queue.add(q);
}
}
}
}

private void print(int[] prev, int s, int t) { // 递归打印 s->t 的路径
if (prev[t] != -1 && t != s) {
print(prev, s, prev[t]);
}
System.out.print(t + " ");
}

这段代码不是很好理解,里面有三个重要的辅助变量 visited、queue、prev。只要理解这三个变量,读懂这段代码估计就没什么问题了。

visited是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q] 会被设置为 true。

queue是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。因为广度优先搜索是逐层访问的,也就是说,我们只有把第 k 层的顶点都访问完成之后,才能访问第 k+1 层的顶点。当我们访问到第 k 层的顶点的时候,我们需要把第 k 层的顶点记录下来,稍后才能通过第 k 层的顶点来找第 k+1 层的顶点。所以,我们用这个队列来实现记录的功能。

prev用来记录搜索路径。当我们从顶点 s 开始,广度优先搜索到顶点 t 后,prev 数组中存储的就是搜索的路径。不过,这个路径是反向存储的。prev[w] 存储的是,顶点 w 是从哪个前驱顶点遍历过来的。比如,我们通过顶点 2 的邻接表访问到顶点 3,那 prev[3] 就等于 2。为了正向打印出路径,我们需要递归地来打印,你可以看下 print() 函数的实现方式。

为了方便你理解,我画了一个广度优先搜索的分解图,你可以结合着代码以及我的讲解一块儿看。

imgimgimg

掌握了广优先搜索算法的原理,我们来看下,广度优先搜索的时间、空间复杂度是多少呢?

最坏情况下,终止顶点 t 离起始顶点 s 很远,需要遍历完整个图才能找到。这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次,所以,广度优先搜索的时间复杂度是 O(V+E),其中,V 表示顶点的个数,E 表示边的个数。当然,对于一个连通图来说,也就是说一个图中的所有顶点都是连通的,E 肯定要大于等于 V-1,所以,广度优先搜索的时间复杂度也可以简写为 O(E)。

广度优先搜索的空间消耗主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)。

深度优先搜索(DFS)

深度优先搜索(Depth-First-Search),简称 DFS。最直观的例子就是“走迷宫”。

假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。

走迷宫的例子很容易能看懂,我们现在再来看下,如何在图中应用深度优先搜索,来找某个顶点到另一个顶点的路径。

你可以看我画的这幅图。搜索的起始顶点是 s,终止顶点是 t,我们希望在图中寻找一条从顶点 s 到顶点 t 的路径。如果映射到迷宫那个例子,s 就是你起始所在的位置,t 就是出口。

我用深度递归算法,把整个搜索的路径标记出来了。这里面实线箭头表示遍历,虚线箭头表示回退。从图中我们可以看出,深度优先搜索找出来的路径,并不是顶点 s 到顶点 t 的最短路径。

img

实际上,深度优先搜索用的是一种比较著名的算法思想,回溯思想。这种思想解决问题的过程,非常适合用递归来实现。回溯思想我们后面会有专门的一节来讲,我们现在还回到深度优先搜索算法上。

我把上面的过程用递归来翻译出来,就是下面这个样子。我们发现,深度优先搜索代码实现也用到了 prev、visited 变量以及 print() 函数,它们跟广度优先搜索代码实现里的作用是一样的。不过,深度优先搜索代码实现里,有个比较特殊的变量 found,它的作用是,当我们已经找到终止顶点 t 之后,我们就不再递归地继续查找了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
boolean found = false; // 全局变量或者类成员变量

public void dfs(int s, int t) {
found = false;
boolean[] visited = new boolean[v];
int[] prev = new int[v];
for (int i = 0; i < v; ++i) {
prev[i] = -1;
}
recurDfs(s, t, visited, prev);
print(prev, s, t);
}

private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
if (found == true) return;
visited[w] = true;
if (w == t) {
found = true;
return;
}
for (int i = 0; i < adj[w].size(); ++i) {
int q = adj[w].get(i);
if (!visited[q]) {
prev[q] = w;
recurDfs(q, t, visited, prev);
}
}
}

理解了深度优先搜索算法之后,我们来看,深度度优先搜索的时、空间间复杂度是多少呢?

从我前面画的图可以看出,每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法的时间复杂度是 O(E),E 表示边的个数。

深度优先搜索算法的消耗内存主要是 visited、prev 数组和递归调用栈。visited、prev 数组的大小跟顶点的个数 V 成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)。

解答开篇

了解了深度优先搜索和广度优先搜索的原理之后,开篇的问题是不是变得很简单了呢?我们现在来一起看下,如何找出社交网络中某个用户的三度好友关系?

上一节我们讲过,社交网络可以用图来表示。这个问题就非常适合用图的广度优先搜索算法来解决,因为广度优先搜索是层层往外推进的。首先,遍历与起始顶点最近的一层顶点,也就是用户的一度好友,然后再遍历与用户距离的边数为 2 的顶点,也就是二度好友关系,以及与用户距离的边数为 3 的顶点,也就是三度好友关系。

我们只需要稍加改造一下广度优先搜索代码,用一个数组来记录每个顶点与起始顶点的距离,非常容易就可以找出三度好友关系。

内容小结

广度优先搜索和深度优先搜索是图上的两种最常用、最基本的搜索算法,比起其他高级的搜索算法,比如 A、IDA 等,要简单粗暴,没有什么优化,所以,也被叫作暴力搜索算法。所以,这两种搜索算法仅适用于状态空间不大,也就是说图不大的搜索。

广度优先搜索,通俗的理解就是,地毯式层层推进,从起始顶点开始,依次往外遍历。广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。

开篇词 | 作为程序员,为什么你应该学好数学

你好,我是黄申,目前在 LinkedIn 从事数据科学的工作,主要负责全球领英的搜索引擎优化,算法和数据架构的搭建。

2006 年,我博士毕业于上海交通大学计算机科学与工程专业,在接下来十余年时间里,我曾经在微软亚洲研究院、IBM 研究院、eBay 中国研发中心做机器学习方向的研究工作,也负责过大润发飞牛网和 1 号店这两家互联网公司的核心搜索和推荐项目,还写过一本书《大数据架构商业之路》。

对于数学和计算机编程的联系,我之前也没有思考过。直到有一次,在硅谷的一个技术交流 Meetup 上,我听到一位嘉宾分享说:“如果你只想当一个普通的程序员,那么数学对你来说,并不重要。但是如果你想做一个顶级程序员,梦想着改变世界,那么数学对你来说就很重要了。”

听完这句话,我马上感受到强烈的共鸣,因为就我自己的工作经历而言,越是往高处走,就越能发现数学的重要性。我知道,数学对于我们每一个程序员来说,都是最熟悉的陌生人。你从小就开始学习数学,中考、高考、研究生考试还要考数学,所以那些熟悉的数学定理、数学公式,陪伴你至少也有 10 年时间了。

但是,自从做了程序员,你可能早就把数学抛在了脑后,甚至觉得曾经为了应试而“硬学”的数学应该是彻底没什么用了,终于可以和他们 say goodbye 了。毕竟作为一个基础学科,数学肯定是没操作系统、数据结构、计算机网络这样的课程看起来“实用”。

起码我之前就是这么认为的。大学的时候,我非常喜欢编程,甚至还翘过数学课,专门在图书馆看计算机类的图书。那会儿我觉得,数学这东西,完全就是应试教育,我更喜欢计算机这样操作类的课程,不喜欢待在教室里听数学老师讲那些枯燥的理论和定理。

再到后来,我读了硕士,开始接触机器学习,猛然间才发现,机器学习表面上是“写程序”,但实际上剥去外表,本质上就是在研究数学。从那会儿开始,我对数学的认知也才逐步客观和理性起来。

再到现在,我参加了工作,写了这么多年代码,我想说,数学学得好不好,将会直接决定一个程序员有没有发展潜力。因为往大了说,数学它其实是一种思维模式,考验的是一个人归纳、总结和抽象的能力。把这个能力放到程序员的世界里,其实就是解决问题的能力。

往小了说,不管是数据结构与算法还是程序设计,其实底层很多原理或者思路都是源自于数学,所以很多大公司,在招人时,也会优先考虑数学专业的毕业生,这些人他们数学基础很好,学起编程也更容易上手。

所以我觉得,如果编程语言是血肉,数学的思想和知识就是灵魂。它可以帮助你选择合适的数据结构和算法、提升系统效率、并且赋予机器智慧。尤其是在大数据和智能化的时代,更是如此。

举个例子,比如我们小学就学到的余数,其实在编程的世界里也有很多应用。你经常用到的分页功能,根据记录的总条数和每页展示的条数,最后来计算整体的页数,这里面就会有余数的思想。再难一点,奇偶校验、循环冗余检验、散列函数、密码学等等都有余数相关的知识。

遇到这些问题的时候,你能说你不懂余数吗?我想你肯定懂,只是很多时候没有想到可以用余数的思想来解决相关问题罢了。那为什么没有想到呢?我认为,本质原因还是你没有数学思维,还是你数学的基础不够好。

所以,在这个专栏里,我想和你重点聊聊数学。当然,我知道数学博大精深,所以在一开始做专栏的时候,我就和极客时间团队一起定义好了专栏的边界,用一句话来说就是“只做程序员需要学的数学知识”。

首先,我梳理了编程中最常用的数学概念,由浅入深剖析它们的本质,希望能够帮你彻底掌握这些最基础、也最核心的数学知识。这其中包括那些你曾经熟悉的数学名词,比如数学归纳法、迭代法、递归、排列、组合等等。

其次,我把线性代数和概率统计中的抽象概念、公式、定理都由内而外地讲了出来,并分析它们在编程中的应用案例,帮助你提升编程的高阶能力。对于这些内容,我会从基本的概念入手,结合生活和工作中的实际案例,让你更轻松地理解概念的含义。

比如,对于朴素贝叶斯方法,我会从基本的随机现象、随机变量和概率分布等着手。随后,我会逐步深入,结合这些数学知识在编程算法中的应用进行展开。比方说,贝叶斯定理是什么,随机变量之间的独立性是什么,这些是如何构成朴素贝叶斯方法的,而最终朴素贝叶斯又是如何被运用在机器学习的分类算法之中的。

img

这样的讲解路线,既能让你巩固基础的概念和知识,同时也能让你明白这些基础性的内容,对计算机编程和算法究竟意味着什么。

不过话又说回来,我认为数学理论和编程实践的结合其实是“决裂”的,所以学习数学的时候,你不能太功利,觉得今天学完明天就能用得着,我觉得这个学习思路可以用在其他课程上,但放在数学里绝对不合适。

因为数学知识总是比较抽象,特别是概率统计和线性代数中的概率、数据分布、矩阵、向量等概念。它们真的很不好理解,也需要我们花时间琢磨,但是对于高级一点的程序设计而言,特别是和数据相关的算法,这些概念就非常重要了,这可都是先人总结出来的经验。

如果你能够将这些基本概念和核心理论都搞懂、搞透,那么面对系统框架设计、性能优化、准确率提升这些难题的时候,你就能从更高的角度出发去解决问题,而不只是站在一个“熟练工”的视角,去增删改查。

最后,我希望数学能够成为你的一种基础能力,希望这个专栏能帮你用数学思维来分析问题和解决问题。数学思想是启发我们思维的中枢,如果你对数学有更好的理解,遇到问题的时候就能追本溯源,快、准、稳地找到解决方案。

伽利略曾经说过,“宇宙这本书是用数学语言写成的”,数学是人类科学进步的重要基础,所以,你我都要怀着敬畏的心态去学习、思考数学。同样,我还要求我自己的孩子一定要学好数学,因为我确信,这对于他未来的发展来说,至关重要。

编程的世界远不止条件和循环语句,程序员的人生应当是创造的舞台。我希望,通过这个专栏的学习,能够让你切实感受到数学这个古老学科的活力和魅力。

好了,说了这么多,相信你已经下定决心和我一起攻克数学。重新开始就要告别过去,你可以在留言区做个“数学学习复盘”,在之前的学习过程中,你的学习状况是怎样的?你遇到的最大困难是什么?现在,你最希望学到的是什么?

Now,你说,我听!

极客时间版权所有: https://time.geekbang.org/column/article/70844

05 | 基础篇:某个应用的CPU使用率居然达到100%,我该怎么办?

通过前两节对平均负载和 CPU 上下文切换的学习,我相信你对 CPU 的性能已经有了初步了解。不过我还是想问一下,在学这个专栏前,你最常用什么指标来描述系统的 CPU 性能呢?我想你的答案,可能不是平均负载,也不是 CPU 上下文切换,而是另一个更直观的指标—— CPU 使用率。

我们前面说过,CPU 使用率是单位时间内 CPU 使用情况的统计,以百分比的方式展示。那么,作为最常用也是最熟悉的 CPU 指标,你能说出 CPU 使用率到底是怎么算出来的吗?再有,诸如 top、ps 之类的性能工具展示的 %user、%nice、 %system、%iowait 、%steal 等等,你又能弄清楚它们之间的不同吗?

今天我就带你了解 CPU 使用率的内容,同时,我也会以我们最常用的反向代理服务器 Nginx 为例,带你在一步步操作和分析中深入理解。

CPU 使用率

在上一期我曾提到,Linux 作为一个多任务操作系统,将每个 CPU 的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉。

为了维护 CPU 时间,Linux 通过事先定义的节拍率(内核中表示为 HZ),触发时间中断,并使用全局变量 Jiffies 记录了开机以来的节拍数。每发生一次时间中断,Jiffies 的值就加 1。

节拍率 HZ 是内核的可配选项,可以设置为 100、250、1000 等。不同的系统可能设置不同数值,你可以通过查询 /boot/config 内核选项来查看它的配置值。比如在我的系统中,节拍率设置成了 250,也就是每秒钟触发 250 次时间中断。

1
2
$ grep 'CONFIG_HZ=' /boot/config-$(uname -r)
CONFIG_HZ=250

同时,正因为节拍率 HZ 是内核选项,所以用户空间程序并不能直接访问。为了方便用户空间程序,内核还提供了一个用户空间节拍率 USER_HZ,它总是固定为 100,也就是 1/100 秒。这样,用户空间程序并不需要关心内核中 HZ 被设置成了多少,因为它看到的总是固定值 USER_HZ。

Linux 通过 /proc 虚拟文件系统,向用户空间提供了系统内部状态的信息,而 /proc/stat 提供的就是系统的 CPU 和任务统计信息。比方说,如果你只关注 CPU 的话,可以执行下面的命令:

1
2
3
4
5
# 只保留各个 CPU 的数据
$ cat /proc/stat | grep ^cpu
cpu 280580 7407 286084 172900810 83602 0 583 0 0 0
cpu0 144745 4181 176701 86423902 52076 0 301 0 0 0
cpu1 135834 3226 109383 86476907 31525 0 282 0 0 0

这里的输出结果是一个表格。其中,第一列表示的是 CPU 编号,如 cpu0、cpu1 ,而第一行没有编号的 cpu ,表示的是所有 CPU 的累加。其他列则表示不同场景下 CPU 的累加节拍数,它的单位是 USER_HZ,也就是 10 ms(1/100 秒),所以这其实就是不同场景下的 CPU 时间。

当然,这里每一列的顺序并不需要你背下来。你只要记住,有需要的时候,查询 man proc 就可以。不过,你要清楚 man proc 文档里每一列的涵义,它们都是 CPU 使用率相关的重要指标,你还会在很多其他的性能工具中看到它们。下面,我来依次解读一下。

  • user(通常缩写为 us),代表用户态 CPU 时间。注意,它不包括下面的 nice 时间,但包括了 guest 时间。
  • nice(通常缩写为 ni),代表低优先级用户态 CPU 时间,也就是进程的 nice 值被调整为 1-19 之间时的 CPU 时间。这里注意,nice 可取值范围是 -20 到 19,数值越大,优先级反而越低。
  • system(通常缩写为 sys),代表内核态 CPU 时间。
  • idle(通常缩写为 id),代表空闲时间。注意,它不包括等待 I/O 的时间(iowait)。
  • iowait(通常缩写为 wa),代表等待 I/O 的 CPU 时间。
  • irq(通常缩写为 hi),代表处理硬中断的 CPU 时间。
  • softirq(通常缩写为 si),代表处理软中断的 CPU 时间。
  • steal(通常缩写为 st),代表当系统运行在虚拟机中的时候,被其他虚拟机占用的 CPU 时间。
  • guest(通常缩写为 guest),代表通过虚拟化运行其他操作系统的时间,也就是运行虚拟机的 CPU 时间。
  • guest_nice(通常缩写为 gnice),代表以低优先级运行虚拟机的时间。

而我们通常所说的 CPU 使用率,就是除了空闲时间外的其他时间占总 CPU 时间的百分比,用公式来表示就是:

img
根据这个公式,我们就可以从 /proc/stat 中的数据,很容易地计算出 CPU 使用率。当然,也可以用每一个场景的 CPU 时间,除以总的 CPU 时间,计算出每个场景的 CPU 使用率。

不过先不要着急计算,你能说出,直接用 /proc/stat 的数据,算的是什么时间段的 CPU 使用率吗?

看到这里,你应该想起来了,这是开机以来的节拍数累加值,所以直接算出来的,是开机以来的平均 CPU 使用率,一般没啥参考价值。

事实上,为了计算 CPU 使用率,性能工具一般都会取间隔一段时间(比如 3 秒)的两次值,作差后,再计算出这段时间内的平均 CPU 使用率,即

img

这个公式,就是我们用各种性能工具所看到的 CPU 使用率的实际计算方法。

现在,我们知道了系统 CPU 使用率的计算方法,那进程的呢?跟系统的指标类似,Linux 也给每个进程提供了运行情况的统计信息,也就是 /proc/[pid]/stat。不过,这个文件包含的数据就比较丰富了,总共有 52 列的数据。

当然,不用担心,因为你并不需要掌握每一列的含义。还是那句话,需要的时候,查 man proc 就行。

回过头来看,是不是说要查看 CPU 使用率,就必须先读取 /proc/stat 和 /proc/[pid]/stat 这两个文件,然后再按照上面的公式计算出来呢?

当然不是,各种各样的性能分析工具已经帮我们计算好了。不过要注意的是,性能分析工具给出的都是间隔一段时间的平均 CPU 使用率,所以要注意间隔时间的设置,特别是用多个工具对比分析时,你一定要保证它们用的是相同的间隔时间。

比如,对比一下 top 和 ps 这两个工具报告的 CPU 使用率,默认的结果很可能不一样,因为 top 默认使用 3 秒时间间隔,而 ps 使用的却是进程的整个生命周期。

怎么查看 CPU 使用率

知道了 CPU 使用率的含义后,我们再来看看要怎么查看 CPU 使用率。说到查看 CPU 使用率的工具,我猜你第一反应肯定是 top 和 ps。的确,top 和 ps 是最常用的性能分析工具:

  • top 显示了系统总体的 CPU 和内存使用情况,以及各个进程的资源使用情况。
  • ps 则只显示了每个进程的资源使用情况。

比如,top 的输出格式为:

1
2
3
4
5
6
7
8
9
10
11
12
13
# 默认每 3 秒刷新一次
$ top
top - 11:58:59 up 9 days, 22:47, 1 user, load average: 0.03, 0.02, 0.00
Tasks: 123 total, 1 running, 72 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.3 us, 0.3 sy, 0.0 ni, 99.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 8169348 total, 5606884 free, 334640 used, 2227824 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 7497908 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 78088 9288 6696 S 0.0 0.1 0:16.83 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.05 kthreadd
4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0:0H
...

这个输出结果中,第三行 %Cpu 就是系统的 CPU 使用率,具体每一列的含义上一节都讲过,只是把 CPU 时间变换成了 CPU 使用率,我就不再重复讲了。不过需要注意,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使用率了。

继续往下看,空白行之后是进程的实时信息,每个进程都有一个 %CPU 列,表示进程的 CPU 使用率。它是用户态和内核态 CPU 使用率的总和,包括进程用户空间使用的 CPU、通过系统调用执行的内核空间 CPU 、以及在就绪队列等待运行的 CPU。在虚拟化环境中,它还包括了运行虚拟机占用的 CPU。

所以,到这里我们可以发现, top 并没有细分进程的用户态 CPU 和内核态 CPU。那要怎么查看每个进程的详细情况呢?你应该还记得上一节用到的 pidstat 吧,它正是一个专门分析每个进程 CPU 使用情况的工具。

比如,下面的 pidstat 命令,就间隔 1 秒展示了进程的 5 组 CPU 使用率,包括:

  • 用户态 CPU 使用率 (%usr);
  • 内核态 CPU 使用率(%system);
  • 运行虚拟机 CPU 使用率(%guest);
  • 等待 CPU 使用率(%wait);
  • 以及总的 CPU 使用率(%CPU)。

最后的 Average 部分,还计算了 5 组数据的平均值。

1
2
3
4
5
6
7
8
9
# 每隔 1 秒输出一组数据,共输出 5 组
$ pidstat 1 5
15:56:02 UID PID %usr %system %guest %wait %CPU CPU Command
15:56:03 0 15006 0.00 0.99 0.00 0.00 0.99 1 dockerd

...

Average: UID PID %usr %system %guest %wait %CPU CPU Command
Average: 0 15006 0.00 0.99 0.00 0.00 0.99 - dockerd

CPU 使用率过高怎么办?

通过 top、ps、pidstat 等工具,你能够轻松找到 CPU 使用率较高(比如 100% )的进程。接下来,你可能又想知道,占用 CPU 的到底是代码里的哪个函数呢?找到它,你才能更高效、更针对性地进行优化。

我猜你第一个想到的,应该是 GDB(The GNU Project Debugger), 这个功能强大的程序调试利器。的确,GDB 在调试程序错误方面很强大。但是,我又要来“挑刺”了。请你记住,GDB 并不适合在性能分析的早期应用。

为什么呢?因为 GDB 调试程序的过程会中断程序运行,这在线上环境往往是不允许的。所以,GDB 只适合用在性能分析的后期,当你找到了出问题的大致函数后,线下再借助它来进一步调试函数内部的问题。

那么哪种工具适合在第一时间分析进程的 CPU 问题呢?我的推荐是 perf。perf 是 Linux 2.6.31 以后内置的性能分析工具。它以性能事件采样为基础,不仅可以分析系统的各种事件和内核性能,还可以用来分析指定应用程序的性能问题。

使用 perf 分析 CPU 性能问题,我来说两种最常见、也是我最喜欢的用法。

第一种常见用法是 perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,使用界面如下所示:

1
2
3
4
5
6
7
8
$ perf top
Samples: 833 of event 'cpu-clock', Event count (approx.): 97742399
Overhead Shared Object Symbol
7.28% perf [.] 0x00000000001f78a4
4.72% [kernel] [k] vsnprintf
4.32% [kernel] [k] module_get_kallsym
3.65% [kernel] [k] _raw_spin_unlock_irqrestore
...

输出结果中,第一行包含三个数据,分别是采样数(Samples)、事件类型(event)和事件总数量(Event count)。比如这个例子中,perf 总共采集了 833 个 CPU 时钟事件,而总事件数则为 97742399。

另外,采样数需要我们特别注意。如果采样数过少(比如只有十几个),那下面的排序和百分比就没什么实际参考价值了。

再往下看是一个表格式样的数据,每一行包含四列,分别是:

  • 第一列 Overhead ,是该符号的性能事件在所有采样中的比例,用百分比来表示。
  • 第二列 Shared ,是该函数或指令所在的动态共享对象(Dynamic Shared Object),如内核、进程名、动态链接库名、内核模块名等。
  • 第三列 Object ,是动态共享对象的类型。比如 [.] 表示用户空间的可执行程序、或者动态链接库,而 [k] 则表示内核空间。
  • 最后一列 Symbol 是符号名,也就是函数名。当函数名未知时,用十六进制的地址来表示。

还是以上面的输出为例,我们可以看到,占用 CPU 时钟最多的是 perf 工具自身,不过它的比例也只有 7.28%,说明系统并没有 CPU 性能问题。 perf top 的使用你应该很清楚了吧。

接着再来看第二种常见用法,也就是 perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。

1
2
3
4
5
$ perf record # 按 Ctrl+C 终止采样
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.452 MB perf.data (6093 samples) ]

$ perf report # 展示类似于 perf top 的报告

在实际使用中,我们还经常为 perf top 和 perf record 加上 -g 参数,开启调用关系的采样,方便我们根据调用链来分析性能问题。

案例

下面我们就以 Nginx + PHP 的 Web 服务为例,来看看当你发现 CPU 使用率过高的问题后,要怎么使用 top 等工具找出异常的进程,又要怎么利用 perf 找出引发性能问题的函数。

你的准备

以下案例基于 Ubuntu 18.04,同样适用于其他的 Linux 系统。我使用的案例环境如下所示:

  • 机器配置:2 CPU,8GB 内存
  • 预先安装 docker、sysstat、perf、ab 等工具,如 apt install docker.io sysstat linux-tools-common apache2-utils

我先简单介绍一下这次新使用的工具 ab。ab(apache bench)是一个常用的 HTTP 服务性能测试工具,这里用来模拟 Ngnix 的客户端。由于 Nginx 和 PHP 的配置比较麻烦,我把它们打包成了两个 Docker 镜像,这样只需要运行两个容器,就可以得到模拟环境。

注意,这个案例要用到两台虚拟机,如下图所示:

img

你可以看到,其中一台用作 Web 服务器,来模拟性能问题;另一台用作 Web 服务器的客户端,来给 Web 服务增加压力请求。使用两台虚拟机是为了相互隔离,避免“交叉感染”。

接下来,我们打开两个终端,分别 SSH 登录到两台机器上,并安装上面提到的工具。

还是同样的“配方”。下面的所有命令,都默认假设以 root 用户运行,如果你是普通用户身份登陆系统,一定要先运行 sudo su root 命令切换到 root 用户。到这里,准备工作就完成了。

不过,操作之前,我还想再说一点。这次案例中 PHP 应用的核心逻辑比较简单,大部分人一眼就可以看出问题,但你要知道,实际生产环境中的源码就复杂多了。

所以,我希望你在按照步骤操作之前,先不要查看源码(避免先入为主),而是把它当成一个黑盒来分析。这样,你可以更好地理解整个解决思路,怎么从系统的资源使用问题出发,分析出瓶颈所在的应用、以及瓶颈在应用中的大概位置。

操作和分析

接下来,我们正式进入操作环节。

首先,在第一个终端执行下面的命令来运行 Nginx 和 PHP 应用:

1
2
$ docker run --name nginx -p 10000:80 -itd feisky/nginx
$ docker run --name phpfpm -itd --network container:nginx feisky/php-fpm

然后,在第二个终端使用 curl 访问 http://[VM1 的 IP]:10000,确认 Nginx 已正常启动。你应该可以看到 It works! 的响应。

1
2
3
# 192.168.0.10 是第一台虚拟机的 IP 地址
$ curl http://192.168.0.10:10000/
It works!

接着,我们来测试一下这个 Nginx 服务的性能。在第二个终端运行下面的 ab 命令:

1
2
3
4
5
6
7
8
# 并发 10 个请求测试 Nginx 性能,总共测试 100 个请求
$ ab -c 10 -n 100 http://192.168.0.10:10000/
This is ApacheBench, Version 2.3 <$Revision: 1706008 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd,
...
Requests per second: 11.63 [#/sec] (mean)
Time per request: 859.942 [ms] (mean)
...

从 ab 的输出结果我们可以看到,Nginx 能承受的每秒平均请求数只有 11.63。你一定在吐槽,这也太差了吧。那到底是哪里出了问题呢?我们用 top 和 pidstat 再来观察下。

这次,我们在第二个终端,将测试的请求总数增加到 10000。这样当你在第一个终端使用性能分析工具时, Nginx 的压力还是继续。

继续在第二个终端,运行 ab 命令:

1
$ ab -c 10 -n 10000 http://10.240.0.5:10000/

接着,回到第一个终端运行 top 命令,并按下数字 1 ,切换到每个 CPU 的使用率:

1
2
3
4
5
6
7
8
9
10
11
$ top
...
%Cpu0 : 98.7 us, 1.3 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu1 : 99.3 us, 0.7 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
...
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21514 daemon 20 0 336696 16384 8712 R 41.9 0.2 0:06.00 php-fpm
21513 daemon 20 0 336696 13244 5572 R 40.2 0.2 0:06.08 php-fpm
21515 daemon 20 0 336696 16384 8712 R 40.2 0.2 0:05.67 php-fpm
21512 daemon 20 0 336696 13244 5572 R 39.9 0.2 0:05.87 php-fpm
21516 daemon 20 0 336696 16384 8712 R 35.9 0.2 0:05.61 php-fpm

这里可以看到,系统中有几个 php-fpm 进程的 CPU 使用率加起来接近 200%;而每个 CPU 的用户使用率(us)也已经超过了 98%,接近饱和。这样,我们就可以确认,正是用户空间的 php-fpm 进程,导致 CPU 使用率骤升。

那再往下走,怎么知道是 php-fpm 的哪个函数导致了 CPU 使用率升高呢?我们来用 perf 分析一下。在第一个终端运行下面的 perf 命令:

1
2
# -g 开启调用关系分析,-p 指定 php-fpm 的进程号 21515
$ perf top -g -p 21515

按方向键切换到 php-fpm,再按下回车键展开 php-fpm 的调用关系,你会发现,调用关系最终到了 sqrt 和 add_function。看来,我们需要从这两个函数入手了。

img

我们拷贝出 Nginx 应用的源码,看看是不是调用了这两个函数:

1
2
3
4
5
6
7
# 从容器 phpfpm 中将 PHP 源码拷贝出来
$ docker cp phpfpm:/app .

# 使用 grep 查找函数调用
$ grep sqrt -r app/ # 找到了 sqrt 调用
app/index.php: $x += sqrt($x);
$ grep add_function -r app/ # 没找到 add_function 调用,这其实是 PHP 内置函数

OK,原来只有 sqrt 函数在 app/index.php 文件中调用了。那最后一步,我们就该看看这个文件的源码了:

1
2
3
4
5
6
7
8
9
$ cat app/index.php
<?php
// test only.
$x = 0.0001;
for ($i = 0; $i <= 1000000; $i++) {
$x += sqrt($x);
}

echo "It works!"

呀,有没有发现问题在哪里呢?我想你要笑话我了,居然犯了一个这么傻的错误,测试代码没删就直接发布应用了。为了方便你验证优化后的效果,我把修复后的应用也打包成了一个 Docker 镜像,你可以在第一个终端中执行下面的命令来运行它:

1
2
3
4
5
# 停止原来的应用
$ docker rm -f nginx phpfpm
# 运行优化后的应用
$ docker run --name nginx -p 10000:80 -itd feisky/nginx:cpu-fix
$ docker run --name phpfpm -itd --network container:nginx feisky/php-fpm:cpu-fix

接着,到第二个终端来验证一下修复后的效果。首先 Ctrl+C 停止之前的 ab 命令后,再运行下面的命令:

1
2
3
4
5
6
7
8
9
10
11
$ ab -c 10 -n 10000 http://10.240.0.5:10000/
...
Complete requests: 10000
Failed requests: 0
Total transferred: 1720000 bytes
HTML transferred: 90000 bytes
Requests per second: 2237.04 [#/sec] (mean)
Time per request: 4.470 [ms] (mean)
Time per request: 0.447 [ms] (mean, across all concurrent requests)
Transfer rate: 375.75 [Kbytes/sec] received
...

从这里你可以发现,现在每秒的平均请求数,已经从原来的 11 变成了 2237。

你看,就是这么很傻的一个小问题,却会极大的影响性能,并且查找起来也并不容易吧。当然,找到问题后,解决方法就简单多了,删除测试代码就可以了。

小结

CPU 使用率是最直观和最常用的系统性能指标,更是我们在排查性能问题时,通常会关注的第一个指标。所以我们更要熟悉它的含义,尤其要弄清楚用户(%user)、Nice(%nice)、系统(%system) 、等待 I/O(%iowait) 、中断(%irq)以及软中断(%softirq)这几种不同 CPU 的使用率。比如说:

  • 用户 CPU 和 Nice CPU 高,说明用户态进程占用了较多的 CPU,所以应该着重排查进程的性能问题。
  • 系统 CPU 高,说明内核态占用了较多的 CPU,所以应该着重排查内核线程或者系统调用的性能问题。
  • I/O 等待 CPU 高,说明等待 I/O 的时间比较长,所以应该着重排查系统存储是不是出现了 I/O 问题。
  • 软中断和硬中断高,说明软中断或硬中断的处理程序占用了较多的 CPU,所以应该着重排查内核中的中断服务程序。

碰到 CPU 使用率升高的问题,你可以借助 top、pidstat 等工具,确认引发 CPU 性能问题的来源;再使用 perf 等工具,排查出引起性能问题的具体函数。

29 | 堆的应用:如何快速获取到Top 10最热门的搜索关键词

搜索引擎的热门搜索排行榜功能你用过吗?你知道这个功能是如何实现的吗?实际上,它的实现并不复杂。搜索引擎每天会接收大量的用户搜索请求,它会把这些用户输入的搜索关键词记录下来,然后再离线地统计分析,得到最热门的 Top 10 搜索关键词。

那请你思考下,假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何能快速获取到热门榜 Top 10 的搜索关键词呢?

这个问题就可以用堆来解决,这也是堆这种数据结构一个非常典型的应用。上一节我们讲了堆和堆排序的一些理论知识,今天我们就来讲一讲,堆这种数据结构几个非常重要的应用:优先级队列、求 Top K 和求中位数。

堆的应用一:优先级队列

首先,我们来看第一个应用场景:优先级队列。

优先级队列,顾名思义,它首先应该是一个队列。我们前面讲过,队列最大的特性就是先进先出。不过,在优先级队列中,数据的出队顺序不是先进先出,而是按照优先级来,优先级最高的,最先出队。

如何实现一个优先级队列呢?方法有很多,但是用堆来实现是最直接、最高效的。这是因为,堆和优先级队列非常相似。一个堆就可以看作一个优先级队列。很多时候,它们只是概念上的区分而已。往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素。

你可别小看这个优先级队列,它的应用场景非常多。我们后面要讲的很多数据结构和算法都要依赖它。比如,赫夫曼编码、图的最短路径、最小生成树算法等等。不仅如此,很多语言中,都提供了优先级队列的实现,比如,Java 的 PriorityQueue,C++ 的 priority_queue 等。

只讲这些应用场景比较空泛,现在,我举两个具体的例子,让你感受一下优先级队列具体是怎么用的。

1. 合并有序小文件

假设我们有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。我们希望将这些 100 个小文件合并成一个有序的大文件。这里就会用到优先级队列。

整体思路有点像归并排序中的合并函数。我们从这 100 个文件中,各取第一个字符串,放入数组中,然后比较大小,把最小的那个字符串放入合并后的大文件中,并从数组中删除。

假设,这个最小的字符串来自于 13.txt 这个小文件,我们就再从这个小文件取下一个字符串,并且放到数组中,重新比较大小,并且选择最小的放入合并后的大文件,并且将它从数组中删除。依次类推,直到所有的文件中的数据都放入到大文件为止。

这里我们用数组这种数据结构,来存储从小文件中取出来的字符串。每次从数组中取最小字符串,都需要循环遍历整个数组,显然,这不是很高效。有没有更加高效方法呢?

这里就可以用到优先级队列,也可以说是堆。我们将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。我们将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将 100 个小文件中的数据依次放入到大文件中。

我们知道,删除堆顶数据和往堆中插入数据的时间复杂度都是 O(logn),n 表示堆中的数据个数,这里就是 100。是不是比原来数组存储的方式高效了很多呢?

2. 高性能定时器

假设我们有一个定时器,定时器中维护了很多定时任务,每个任务都设定了一个要触发执行的时间点。定时器每过一个很小的单位时间(比如 1 秒),就扫描一遍任务,看是否有任务到达设定的执行时间。如果到达了,就拿出来执行。

img

但是,这样每过 1 秒就扫描一遍任务列表的做法比较低效,主要原因有两点:第一,任务的约定执行时间离当前时间可能还有很久,这样前面很多次扫描其实都是徒劳的;第二,每次都要扫描整个任务列表,如果任务列表很大的话,势必会比较耗时。

针对这些问题,我们就可以用优先级队列来解决。我们按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。

这样,定时器就不需要每隔 1 秒就扫描一遍任务列表了。它拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。

这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。这样,定时器就可以设定在 T 秒之后,再来执行任务。从当前时间点到(T-1)秒这段时间里,定时器都不需要做任何事情。

当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。

这样,定时器既不用间隔 1 秒就轮询一次,也不用遍历整个任务列表,性能也就提高了。

堆的应用二:利用堆求 Top K

刚刚我们学习了优先级队列,我们现在来看,堆的另外一个非常重要的应用场景,那就是“求 Top K 问题”。

我把这种求 Top K 的问题抽象成两类。一类是针对静态数据集合,也就是说数据集合事先确定,不会再变。另一类是针对动态数据集合,也就是说数据集合事先并不确定,有数据动态地加入到集合中。

针对静态数据,如何在一个包含 n 个数据的数组中,查找前 K 大数据呢?我们可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出取数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。

遍历数组需要 O(n) 的时间复杂度,一次堆化操作需要 O(logK) 的时间复杂度,所以最坏情况下,n 个元素都入堆一次,所以时间复杂度就是 O(nlogK)。

针对动态数据求得 Top K 就是实时 Top K。怎么理解呢?我举一个例子。一个数据集合中有两个操作,一个是添加数据,另一个询问当前的前 K 大数据。

如果每次询问前 K 大数据,我们都基于当前的数据重新计算的话,那时间复杂度就是 O(nlogK),n 表示当前的数据的大小。实际上,我们可以一直都维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以里立刻返回给他。

堆的应用三:利用堆求中位数

前面我们讲了如何求 Top K 的问题,现在我们来讲下,如何求动态数据集合中的中位数。

中位数,顾名思义,就是处在中间位置的那个数。如果数据的个数是奇数,把数据从小到大排列,那第 n2+1n2+1 个数据就是中位数;如果数据的个数是偶数的话,那处于中间位置的数据有两个,第 n2n2 个和第 n2+1n2+1 个数据,这个时候,我们可以随意取一个作为中位数,比如取两个数中靠前的那个,就是第 n2n2 个数据。

img

对于一组静态数据,中位数是固定的,我们可以先排序,第 n2n2 个数据就是中位数。每次询问中位数的时候,我们直接返回这个固定的值就好了。所以,尽管排序的代价比较大,但是边际成本会很小。但是,如果我们面对的是动态数据集合,中位数在不停地变动,如果再用先排序的方法,每次询问中位数的时候,都要先进行排序,那效率就不高了。

借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。我们来看看,它是如何做到的?

我们需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。

也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 n2n2 个数据存储在大顶堆中,后 n2n2 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 n2+1n2+1 个数据,小顶堆中就存储 n2n2 个数据。

img

我们前面也提到,数据是动态变化的,当新添加一个数据的时候,我们如何调整两个堆,让大顶堆中的堆顶元素继续是中位数呢?

如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;如果新加入的数据大于等于小顶堆的堆顶元素,我们就将这个新数据插入到小顶堆。

这个时候就有可能出现,两个堆中的数据个数不符合前面约定的情况:如果 n 是偶数,两个堆中的数据个数都是 n2n2;如果 n 是奇数,大顶堆有 n2+1n2+1 个数据,小顶堆有 n2n2 个数据。这个时候,我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。

img

于是,我们就可以利用两个堆,一个大顶堆、一个小顶堆,实现在动态数据集合中求中位数的操作。插入数据因为需要涉及堆化,所以时间复杂度变成了 O(logn),但是求中位数我们只需要返回大顶堆的堆顶元素就可以了,所以时间复杂度就是 O(1)。

实际上,利用两个堆不仅可以快速求出中位数,还可以快速求其他百分位的数据,原理是类似的。还记得我们在“为什么要学习数据结构与算法”里的这个问题吗?“如何快速求接口的 99% 响应时间?”我们现在就来看下,利用两个堆如何来实现。

在开始这个问题的讲解之前,我先解释一下,什么是“99% 响应时间”。

中位数的概念就是将数据从小到大排列,处于中间位置,就叫中位数,这个数据会大于等于前面 50% 的数据。99 百分位数的概念可以类比中位数,如果将一组数据从小到大排列,这个 99 百分位数就是大于前面 99% 数据的那个数据。

如果你还是不太理解,我再举个例子。假设有 100 个数据,分别是 1,2,3,……,100,那 99 百分位数就是 99,因为小于等于 99 的数占总个数的 99%。

img

弄懂了这个概念,我们再来看 99% 响应时间。如果有 100 个接口访问请求,每个接口请求的响应时间都不同,比如 55 毫秒、100 毫秒、23 毫秒等,我们把这 100 个接口的响应时间按照从小到大排列,排在第 99 的那个数据就是 99% 响应时间,也叫 99 百分位响应时间。

我们总结一下,如果有 n 个数据,将数据从小到大排列之后,99 百分位数大约就是第 n99% 个数据,同类,80 百分位数大约就是第 n80% 个数据。

弄懂了这些,我们再来看如何求 99% 响应时间。

我们维护两个堆,一个大顶堆,一个小顶堆。假设当前总数据的个数是 n,大顶堆中保存 n99% 个数据,小顶堆中保存 n1% 个数据。大顶堆堆顶的数据就是我们要找的 99% 响应时间。

每次插入一个数据的时候,我们要判断这个数据跟大顶堆和小顶堆堆顶数据的大小关系,然后决定插入到哪个堆中。如果这个新插入的数据比大顶堆的堆顶数据小,那就插入大顶堆;如果这个新插入的数据比小顶堆的堆顶数据大,那就插入小顶堆。

但是,为了保持大顶堆中的数据占 99%,小顶堆中的数据占 1%,在每次新插入数据之后,我们都要重新计算,这个时候大顶堆和小顶堆中的数据个数,是否还符合 99:1 这个比例。如果不符合,我们就将一个堆中的数据移动到另一个堆,直到满足这个比例。移动的方法类似前面求中位数的方法,这里我就不啰嗦了。

通过这样的方法,每次插入数据,可能会涉及几个数据的堆化操作,所以时间复杂度是 O(logn)。每次求 99% 响应时间的时候,直接返回大顶堆中的堆顶数据即可,时间复杂度是 O(1)。

解答开篇

学懂了上面的一些应用场景的处理思路,我想你应该能解决开篇的那个问题了吧。假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何快速获取到 Top 10 最热门的搜索关键词呢?

处理这个问题,有很多高级的解决方法,比如使用 MapReduce 等。但是,如果我们将处理的场景限定为单机,可以使用的内存为 1GB。那这个问题该如何解决呢?

因为用户搜索的关键词,有很多可能都是重复的,所以我们首先要统计每个搜索关键词出现的频率。我们可以通过散列表、平衡二叉查找树或者其他一些支持快速查找、插入的数据结构,来记录关键词及其出现的次数。

假设我们选用散列表。我们就顺序扫描这 10 亿个搜索关键词。当扫描到某个关键词时,我们去散列表中查询。如果存在,我们就将对应的次数加一;如果不存在,我们就将它插入到散列表,并记录次数为 1。以此类推,等遍历完这 10 亿个搜索关键词之后,散列表中就存储了不重复的搜索关键词以及出现的次数。

然后,我们再根据前面讲的用堆求 Top K 的方法,建立一个大小为 10 的小顶堆,遍历散列表,依次取出每个搜索关键词及对应出现的次数,然后与堆顶的搜索关键词对比。如果出现次数比堆顶搜索关键词的次数多,那就删除堆顶的关键词,将这个出现次数更多的关键词加入到堆中。

以此类推,当遍历完整个散列表中的搜索关键词之后,堆中的搜索关键词就是出现次数最多的 Top 10 搜索关键词了。

不知道你发现了没有,上面的解决思路其实存在漏洞。10 亿的关键词还是很多的。我们假设 10 亿条搜索关键词中不重复的有 1 亿条,如果每个搜索关键词的平均长度是 50 个字节,那存储 1 亿个关键词起码需要 5GB 的内存空间,而散列表因为要避免频繁冲突,不会选择太大的装载因子,所以消耗的内存空间就更多了。而我们的机器只有 1GB 的可用内存空间,所以我们无法一次性将所有的搜索关键词加入到内存中。这个时候该怎么办呢?

我们在哈希算法那一节讲过,相同数据经过哈希算法得到的哈希值是一样的。我们可以哈希算法的这个特点,将 10 亿条搜索关键词先通过哈希算法分片到 10 个文件中。

具体可以这样做:我们创建 10 个空文件 00,01,02,……,09。我们遍历这 10 亿个关键词,并且通过某个哈希算法对其求哈希值,然后哈希值同 10 取模,得到的结果就是这个搜索关键词应该被分到的文件编号。

对这 10 亿个关键词分片之后,每个文件都只有 1 亿的关键词,去除掉重复的,可能就只有 1000 万个,每个关键词平均 50 个字节,所以总的大小就是 500MB。1GB 的内存完全可以放得下。

我们针对每个包含 1 亿条搜索关键词的文件,利用散列表和堆,分别求出 Top 10,然后把这个 10 个 Top 10 放在一块,然后取这 100 个关键词中,出现次数最多的 10 个关键词,这就是这 10 亿数据中的 Top 10 最频繁的搜索关键词了。

内容小结

我们今天主要讲了堆的几个重要的应用,它们分别是:优先级队列、求 Top K 问题和求中位数问题。

优先级队列是一种特殊的队列,优先级高的数据先出队,而不再像普通的队列那样,先进先出。实际上,堆就可以看作优先级队列,只是称谓不一样罢了。求 Top K 问题又可以分为针对静态数据和针对动态数据,只需要利用一个堆,就可以做到非常高效率的查询 Top K 的数据。求中位数实际上还有很多变形,比如求 99 百分位数据、90 百分位数据等,处理的思路都是一样的,即利用两个堆,一个大顶堆,一个小顶堆,随着数据的动态添加,动态调整两个堆中的数据,最后大顶堆的堆顶元素就是要求的数据。

极客时间版权所有: https://time.geekbang.org/column/article/70187

04 | 基础篇:经常说的 CPU 上下文切换是什么意思?(下)

上一节,我给你讲了 CPU 上下文切换的工作原理。简单回顾一下,CPU 上下文切换是保证 Linux 系统正常工作的一个核心功能,按照不同场景,可以分为进程上下文切换、线程上下文切换和中断上下文切换。具体的概念和区别,你也要在脑海中过一遍,忘了的话及时查看上一篇。

今天我们就接着来看,究竟怎么分析 CPU 上下文切换的问题。

怎么查看系统的上下文切换情况

通过前面学习我们知道,过多的上下文切换,会把 CPU 时间消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,缩短进程真正运行的时间,成了系统性能大幅下降的一个元凶。

既然上下文切换对系统性能影响那么大,你肯定迫不及待想知道,到底要怎么查看上下文切换呢?在这里,我们可以使用 vmstat 这个工具,来查询系统的上下文切换情况。

vmstat 是一个常用的系统性能分析工具,主要用来分析系统的内存使用情况,也常用来分析 CPU 上下文切换和中断的次数。

比如,下面就是一个 vmstat 的使用示例:

1
2
3
4
5
# 每隔 5 秒输出 1 组数据
$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 7005360 91564 818900 0 0 0 0 25 33 0 0 100 0 0

我们一起来看这个结果,你可以先试着自己解读每列的含义。在这里,我重点强调下,需要特别关注的四列内容:

  • cs(context switch)是每秒上下文切换的次数。
  • in(interrupt)则是每秒中断的次数。
  • r(Running or Runnable)是就绪队列的长度,也就是正在运行和等待 CPU 的进程数。
  • b(Blocked)则是处于不可中断睡眠状态的进程数。

可以看到,这个例子中的上下文切换次数 cs 是 33 次,而系统中断次数 in 则是 25 次,而就绪队列长度 r 和不可中断状态进程数 b 都是 0。

vmstat 只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用我们前面提到过的 pidstat 了。给它加上 -w 选项,你就可以查看每个进程上下文切换的情况了。

比如说:

1
2
3
4
5
6
7
8
# 每隔 5 秒输出 1 组数据
$ pidstat -w 5
Linux 4.15.0 (ubuntu) 09/23/18 _x86_64_ (2 CPU)

08:18:26 UID PID cswch/s nvcswch/s Command
08:18:31 0 1 0.20 0.00 systemd
08:18:31 0 8 5.40 0.00 rcu_sched
...

这个结果中有两列内容是我们的重点关注对象。一个是 cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。

这两个概念你一定要牢牢记住,因为它们意味着不同的性能问题:

  • 所谓自愿上下文切换,是指进程无法获取所需资源,导致的上下文切换。比如说, I/O、内存等系统资源不足时,就会发生自愿上下文切换。
  • 非自愿上下文切换,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。比如说,大量进程都在争抢 CPU 时,就容易发生非自愿上下文切换。

案例分析

知道了怎么查看这些指标,另一个问题又来了,上下文切换频率是多少次才算正常呢?别急着要答案,同样的,我们先来看一个上下文切换的案例。通过案例实战演练,你自己就可以分析并找出这个标准了。

你的准备

今天的案例,我们将使用 sysbench 来模拟系统多线程调度切换的情况。

sysbench 是一个多线程的基准测试工具,一般用来评估不同系统参数下的数据库负载情况。当然,在这次案例中,我们只把它当成一个异常进程来看,作用是模拟上下文切换过多的问题。

下面的案例基于 Ubuntu 18.04,当然,其他的 Linux 系统同样适用。我使用的案例环境如下所示:

  • 机器配置:2 CPU,8GB 内存
  • 预先安装 sysbench 和 sysstat 包,如 apt install sysbench sysstat

正式操作开始前,你需要打开三个终端,登录到同一台 Linux 机器中,并安装好上面提到的两个软件包。包的安装,可以先 Google 一下自行解决,如果仍然有问题的,在留言区写下你的情况。

另外注意,下面所有命令,都默认以 root 用户运行。所以,如果你是用普通用户登陆的系统,记住先运行 sudo su root 命令切换到 root 用户。

安装完成后,你可以先用 vmstat 看一下空闲系统的上下文切换次数:

1
2
3
4
5
# 间隔 1 秒后输出 1 组数据
$ vmstat 1 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 6984064 92668 830896 0 0 2 19 19 35 1 0 99 0 0

这里你可以看到,现在的上下文切换次数 cs 是 35,而中断次数 in 是 19,r 和 b 都是 0。因为这会儿我并没有运行其他任务,所以它们就是空闲系统的上下文切换次数。

操作和分析

接下来,我们正式进入实战操作。

首先,在第一个终端里运行 sysbench ,模拟系统多线程调度的瓶颈:

1
2
# 以 10 个线程运行 5 分钟的基准测试,模拟多线程切换的问题
$ sysbench --threads=10 --max-time=300 threads run

接着,在第二个终端运行 vmstat ,观察上下文切换情况:

1
2
3
4
5
6
# 每隔 1 秒输出 1 组数据(需要 Ctrl+C 才结束)
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
6 0 0 6487428 118240 1292772 0 0 0 0 9019 1398830 16 84 0 0 0
8 0 0 6487428 118240 1292772 0 0 0 0 10191 1392312 16 84 0 0 0

你应该可以发现,cs 列的上下文切换次数从之前的 35 骤然上升到了 139 万。同时,注意观察其他几个指标:

  • r 列:就绪队列的长度已经到了 8,远远超过了系统 CPU 的个数 2,所以肯定会有大量的 CPU 竞争。
  • us(user)和 sy(system)列:这两列的 CPU 使用率加起来上升到了 100%,其中系统 CPU 使用率,也就是 sy 列高达 84%,说明 CPU 主要是被内核占用了。
  • in 列:中断次数也上升到了 1 万左右,说明中断处理也是个潜在的问题。

综合这几个指标,我们可以知道,系统的就绪队列过长,也就是正在运行和等待 CPU 的进程数过多,导致了大量的上下文切换,而上下文切换又导致了系统 CPU 的占用率升高。

那么到底是什么进程导致了这些问题呢?

我们继续分析,在第三个终端再用 pidstat 来看一下, CPU 和进程上下文切换的情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 每隔 1 秒输出 1 组数据(需要 Ctrl+C 才结束)
# -w 参数表示输出进程切换指标,而 -u 参数则表示输出 CPU 使用指标
$ pidstat -w -u 1
08:06:33 UID PID %usr %system %guest %wait %CPU CPU Command
08:06:34 0 10488 30.00 100.00 0.00 0.00 100.00 0 sysbench
08:06:34 0 26326 0.00 1.00 0.00 0.00 1.00 0 kworker/u4:2

08:06:33 UID PID cswch/s nvcswch/s Command
08:06:34 0 8 11.00 0.00 rcu_sched
08:06:34 0 16 1.00 0.00 ksoftirqd/1
08:06:34 0 471 1.00 0.00 hv_balloon
08:06:34 0 1230 1.00 0.00 iscsid
08:06:34 0 4089 1.00 0.00 kworker/1:5
08:06:34 0 4333 1.00 0.00 kworker/0:3
08:06:34 0 10499 1.00 224.00 pidstat
08:06:34 0 26326 236.00 0.00 kworker/u4:2
08:06:34 1000 26784 223.00 0.00 sshd

从 pidstat 的输出你可以发现,CPU 使用率的升高果然是 sysbench 导致的,它的 CPU 使用率已经达到了 100%。但上下文切换则是来自其他进程,包括非自愿上下文切换频率最高的 pidstat ,以及自愿上下文切换频率最高的内核线程 kworker 和 sshd。

不过,细心的你肯定也发现了一个怪异的事儿:pidstat 输出的上下文切换次数,加起来也就几百,比 vmstat 的 139 万明显小了太多。这是怎么回事呢?难道是工具本身出了错吗?

别着急,在怀疑工具之前,我们再来回想一下,前面讲到的几种上下文切换场景。其中有一点提到, Linux 调度的基本单位实际上是线程,而我们的场景 sysbench 模拟的也是线程的调度问题,那么,是不是 pidstat 忽略了线程的数据呢?

通过运行 man pidstat ,你会发现,pidstat 默认显示进程的指标数据,加上 -t 参数后,才会输出线程的指标。

所以,我们可以在第三个终端里, Ctrl+C 停止刚才的 pidstat 命令,再加上 -t 参数,重试一下看看:

1
2
3
4
5
6
7
8
9
10
11
# 每隔 1 秒输出一组数据(需要 Ctrl+C 才结束)
# -wt 参数表示输出线程的上下文切换指标
$ pidstat -wt 1
08:14:05 UID TGID TID cswch/s nvcswch/s Command
...
08:14:05 0 10551 - 6.00 0.00 sysbench
08:14:05 0 - 10551 6.00 0.00 |__sysbench
08:14:05 0 - 10552 18911.00 103740.00 |__sysbench
08:14:05 0 - 10553 18915.00 100955.00 |__sysbench
08:14:05 0 - 10554 18827.00 103954.00 |__sysbench
...

现在你就能看到了,虽然 sysbench 进程(也就是主线程)的上下文切换次数看起来并不多,但它的子线程的上下文切换次数却有很多。看来,上下文切换罪魁祸首,还是过多的 sysbench 线程。

我们已经找到了上下文切换次数增多的根源,那是不是到这儿就可以结束了呢?

当然不是。不知道你还记不记得,前面在观察系统指标时,除了上下文切换频率骤然升高,还有一个指标也有很大的变化。是的,正是中断次数。中断次数也上升到了 1 万,但到底是什么类型的中断上升了,现在还不清楚。我们接下来继续抽丝剥茧找源头。

既然是中断,我们都知道,它只发生在内核态,而 pidstat 只是一个进程的性能分析工具,并不提供任何关于中断的详细信息,怎样才能知道中断发生的类型呢?

没错,那就是从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的一部分,提供了一个只读的中断使用情况。

我们还是在第三个终端里, Ctrl+C 停止刚才的 pidstat 命令,然后运行下面的命令,观察中断的变化情况:

1
2
3
4
5
6
# -d 参数表示高亮显示变化的区域
$ watch -d cat /proc/interrupts
CPU0 CPU1
...
RES: 2450431 5279697 Rescheduling interrupts
...

观察一段时间,你可以发现,变化速度最快的是重调度中断(RES),这个中断类型表示,唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统(SMP)中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。

所以,这里的中断升高还是因为过多任务的调度问题,跟前面上下文切换次数的分析结果是一致的。

通过这个案例,你应该也发现了多工具、多方面指标对比观测的好处。如果最开始时,我们只用了 pidstat 观测,这些很严重的上下文切换线程,压根儿就发现不了了。

现在再回到最初的问题,每秒上下文切换多少次才算正常呢?

这个数值其实取决于系统本身的 CPU 性能。在我看来,如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。

这时,你还需要根据上下文切换的类型,再做具体分析。比方说:

  • 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;
  • 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈;
  • 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。

小结

今天,我通过一个 sysbench 的案例,给你讲了上下文切换问题的分析思路。碰到上下文切换次数过多的问题时,我们可以借助 vmstat 、 pidstat 和 /proc/interrupts 等工具,来辅助排查性能问题的根源。

28 | 堆和堆排序:为什么说堆排序没有快速排序快

我们今天讲另外一种特殊的树,“堆”(HeapHeap)。堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地的、时间复杂度为 O(nlogn)O(nlog⁡n) 的排序算法。

前面我们学过快速排序,平均情况下,它的时间复杂度为 O(nlogn)O(nlog⁡n)。尽管这两种排序算法的时间复杂度都是 O(nlogn)O(nlog⁡n),甚至堆排序比快速排序的时间复杂度还要稳定,但是,在实际的软件开发中,快速排序的性能要比堆排序好,这是为什么呢?

现在,你可能还无法回答,甚至对问题本身还有点疑惑。没关系,带着这个问题,我们来学习今天的内容。等你学完之后,或许就能回答出来了。

如何理解“堆”?

前面我们提到,堆是一种特殊的树。我们现在就来看看,什么样的树才是堆。我罗列了两点要求,只要满足这两点,它就是一个堆。

  • 堆是一个完全二叉树;
  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

我分别解释一下这两点。

第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。

定义解释清楚了,你来看看,下面这几个二叉树是不是堆?

img

其中第 11 个和第 22 个是大顶堆,第 33 个是小顶堆,第 44 个不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

如何实现一个堆?

要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆

我之前讲过,完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

我画了一个用数组存储堆的例子,你可以先看下。

img

从图中我们可以看到,数组中下标为 ii 的节点的左子节点,就是下标为 i∗2i∗2 的节点,右子节点就是下标为 i∗2+1i∗2+1 的节点,父节点就是下标为 i2i2 的节点。

知道了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,我下面都是拿大顶堆来讲解)。

1. 往堆中插入一个元素

往堆中插入一个元素后,我们需要继续满足堆的两个特性。

如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化(heapify)。

堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。

img

堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

我这里画了一张堆化的过程分解图。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。

img

我将上面讲的往堆中插入数据的过程,翻译成了代码,你可以结合着一块看。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class Heap {
private int[] a; // 数组,从下标 1 开始存储数据
private int n; // 堆可以存储的最大数据个数
private int count; // 堆中已经存储的数据个数

public Heap(int capacity) {
a = new int[capacity + 1];
n = capacity;
count = 0;
}

public void insert(int data) {
if (count >= n) return; // 堆满了
++count;
a[count] = data;
int i = count;
while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素
i = i/2;
}
}
}

2. 删除堆顶元素

从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。

假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

这里我也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。

img

实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法

因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。

img

我把上面的删除过程同样也翻译成了代码,贴在这里,你可以结合着看。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public void removeMax() {
if (count == 0) return -1; // 堆中没有数据
a[1] = a[count];
--count;
heapify(a, count, 1);
}

private void heapify(int[] a, int n, int i) { // 自上往下堆化
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}

我们知道,一个包含 nn 个节点的完全二叉树,树的高度不会超过 log2nlog2⁡n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)O(log⁡n)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)O(log⁡n)。

如何基于堆实现排序?

前面我们讲过好几种排序算法,我们再来回忆一下,有时间复杂度是 O(n2)O(n2) 的冒泡排序、插入排序、选择排序,有时间复杂度是 O(nlogn)O(nlog⁡n) 的归并排序、快速排序,还有线性排序。

这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是 O(nlogn)O(nlog⁡n),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

我们可以把堆排序的过程大致分解成两个大的步骤,建堆排序

1. 建堆

我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。

第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含 nn 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 11 的数据。然后,我们调用前面讲的插入操作,将下标从 22 到 nn 的数据依次插入到堆中。这样我们就将包含 nn 个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从第一个非叶子节点开始,依次堆化就行了。

imgimg

对于程序员来说,看代码可能更好理解一些,所以,我将第二种实现思路翻译成了代码,你可以看下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
private static void buildHeap(int[] a, int n) {
for (int i = n/2; i >= 1; --i) {
heapify(a, n, i);
}
}

private static void heapify(int[] a, int n, int i) {
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}

你可能已经发现了,在这段代码中,我们对下标从 n2n2 开始到 11 的数据进行堆化,下标是 n2+1n2+1 到 nn 的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从 n2+1n2+1 到 nn 的节点都是叶子节点。

现在,我们来看,建堆操作的时间复杂度是多少呢?

每个节点堆化的时间复杂度是 O(logn)O(log⁡n),那 n2+1n2+1 个节点堆化的总时间复杂度是不是就是 O(nlogn)O(nlog⁡n) 呢?这个答案虽然也没错,但是这个值还是不够精确。实际上,堆排序的建堆过程的时间复杂度是 O(n)O(n)。我带你推导一下。

因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 kk 成正比。

我把每一层的节点个数和对应的高度画了出来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。

img

我们将每个非叶子节点的高度求和,就是下面这个公式:

img

这个公式的求解稍微有点技巧,不过我们高中应该都学过:把公式左右都乘以 22,就得到另一个公式 S2S2。我们将 S2S2 错位对齐,并且用 S2S2 减去 S1S1,可以得到 SS。

img

SS 的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下面图中画的这个样子。

img

因为 h=log2nh=log2⁡n,代入公式 SS,就能得到 S=O(n)S=O(n),所以,建堆的时间复杂度就是 O(n)O(n)。

2. 排序

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 nn 的位置。

这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 nn 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n−1n−1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n−1n−1 的位置,一直重复这个过程,直到最后堆中只剩下标为 11 的一个元素,排序工作就完成了。

img

堆排序的过程,我也翻译成了代码。结合着代码看,你理解起来应该会更加容易。

1
2
3
4
5
6
7
8
9
10
// n 表示数据的个数,数组 a 中的数据从下标 1 到 n 的位置。
public static void sort(int[] a, int n) {
buildHeap(a, n);
int k = n;
while (k > 1) {
swap(a, 1, k);
--k;
heapify(a, k, 1);
}
}

现在,我们再来分析一下堆排序的时间复杂度、空间复杂度以及稳定性。

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n)O(n),排序过程的时间复杂度是 O(nlogn)O(nlog⁡n),所以,堆排序整体的时间复杂度是 O(nlogn)O(nlog⁡n)。

堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

今天的内容到此就讲完了。我这里要稍微解释一下,在前面的讲解以及代码中,我都假设,堆中的数据是从数组下标为 1 的位置开始存储。那如果从 00 开始存储,实际上处理思路是没有任何变化的,唯一变化的,可能就是,代码实现的时候,计算子节点和父节点的下标的公式改变了。

如果节点的下标是 ii,那左子节点的下标就是 2∗i+12∗i+1,右子节点的下标就是 2∗i+22∗i+2,父节点的下标就是 i−12i−12。

解答开篇

现在我们来看开篇的问题,在实际开发中,为什么快速排序要比堆排序性能好?

我觉得主要有两方面的原因。

第一点,堆排序数据访问的方式没有快速排序友好。

对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。 比如,堆排序中,最重要的一个操作就是数据的堆化。比如下面这个例子,对堆顶节点进行堆化,会依次访问数组下标是 1,2,4,81,2,4,8 的元素,而不是像快速排序那样,局部顺序访问,所以,这样对 CPU 缓存是不友好的。

img

第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。

我们在讲排序的时候,提过两个概念,有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快速排序数据交换的次数不会比逆序度多。

但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得更无序了。

img

对于第二点,你可以自己做个试验看下。我们用一个记录交换次数的变量,在代码中,每次交换的时候,我们就对这个变量加一,排序完成之后,这个变量的值就是总的数据交换次数。这样你就能很直观地理解我刚刚说的,堆排序比快速排序交换次数多。

内容小结

今天我们讲了堆这种数据结构。堆是一种完全二叉树。它最大的特性是:每个节点的值都大于等于(或小于等于)其子树节点的值。因此,堆被分成了两类,大顶堆和小顶堆。

堆中比较重要的两个操作是插入一个数据和删除堆顶元素。这两个操作都要用到堆化。插入一个数据的时候,我们把新插入的数据放到数组的最后,然后从下往上堆化;删除堆顶数据的时候,我们把数组中的最后一个元素放到堆顶,然后从上往下堆化。这两个操作时间复杂度都是 O(logn)O(log⁡n)。

除此之外,我们还讲了堆的一个经典应用,堆排序。堆排序包含两个过程,建堆和排序。我们将下标从 n2n2 到 11 的节点,依次进行从上到下的堆化操作,然后就可以将数组中的数据组织成堆这种数据结构。接下来,我们迭代地将堆顶的元素放到堆的末尾,并将堆的大小减一,然后再堆化,重复这个过程,直到堆中只剩下一个元素,整个数组中的数据就都有序排列了。

极客时间版权所有: https://time.geekbang.org/column/article/69913

05 | 深入浅出索引(下)

在上一篇文章中,我和你介绍了 InnoDB 索引的数据结构模型,今天我们再继续聊聊跟 MySQL 索引有关的概念。

在开始这篇文章之前,我们先来看一下这个问题:

在下面这个表 T 中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

下面是这个表的初始化语句。

1
2
3
4
5
6
7
8
9
10
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

复制代码

img

图 1 InnoDB 的索引组织结构

现在,我们一起来看看这条 SQL 查询语句的执行流程:

  1. 在 k 索引树上找到 k=3 的记录,取得 ID = 300;
  2. 再到 ID 索引树查到 ID=300 对应的 R3;
  3. 在 k 索引树取下一个值 k=5,取得 ID=500;
  4. 再回到 ID 索引树查到 ID=500 对应的 R4;
  5. 在 k 索引树取下一个值 k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

覆盖索引

如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

需要注意的是,在引擎内部使用覆盖索引在索引 k 上其实读了三个记录,R3~R5(对应的索引 k 上的记录项),但是对于 MySQL 的 Server 层来说,它就是找引擎拿到了两条记录,因此 MySQL 认为扫描行数是 2。

备注:关于如何查看扫描行数的问题,我将会在第 16 文章《如何正确地显示随机消息?》中,和你详细讨论。

基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

假设这个市民表的定义是这样的:

1
2
3
4
5
6
7
8
9
10
11
12
CREATE TABLE `tuser` (
`id` int(11) NOT NULL,
`id_card` varchar(32) DEFAULT NULL,
`name` varchar(32) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`ismale` tinyint(1) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `id_card` (`id_card`),
KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB

复制代码

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务 DBA,或者称为业务数据架构师的工作。

最左前缀原则

看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?

这里,我先和你说结论吧。B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。

img

图 2 (name,age)索引示意图

可以看到,索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果。

如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是”where name like ‘张 %’”。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止。

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以现在你知道了,这段开头的问题里,我们要为高频请求创建 (身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

那么,如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段索引。

索引下推

上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的:

1
2
3
mysql> select * from tuser where name like '张 %' and age=10 and ismale=1;

复制代码

你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3。当然,这还不错,总比全表扫描要好。

然后呢?

当然是判断其他条件是否满足。

在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。

而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

图 3 和图 4,是这两个过程的执行流程图。

img

图 3 无索引下推执行流程

img

图 4 索引下推执行流程

在图 3 和 4 这两个图里面,每一个虚线箭头表示回表一次。

图 3 中,在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。

图 4 跟图 3 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。

小结

今天这篇文章,我和你继续讨论了数据库索引的概念,包括了覆盖索引、前缀索引、索引下推。你可以看到,在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一。我们在使用数据库的时候,尤其是在设计表结构时,也要以减少资源消耗作为目标。

接下来我给你留下一个问题吧。

实际上主键索引也是可以使用多个字段的。DBA 小吕在入职新公司的时候,就发现自己接手维护的库里面,有这么一个表,表结构定义类似这样的:

1
2
3
4
5
6
7
8
9
10
11
12
CREATE TABLE `geek` (
`a` int(11) NOT NULL,
`b` int(11) NOT NULL,
`c` int(11) NOT NULL,
`d` int(11) NOT NULL,
PRIMARY KEY (`a`,`b`),
KEY `c` (`c`),
KEY `ca` (`c`,`a`),
KEY `cb` (`c`,`b`)
) ENGINE=InnoDB;

复制代码

公司的同事告诉他说,由于历史原因,这个表需要 a、b 做联合主键,这个小吕理解了。

但是,学过本章内容的小吕又纳闷了,既然主键包含了 a、b 这两个字段,那意味着单独在字段 c 上创建一个索引,就已经包含了三个字段了呀,为什么要创建“ca”“cb”这两个索引?

同事告诉他,是因为他们的业务里面有这样的两种语句:

1
2
3
4
select * from geek where c=N order by a limit 1;
select * from geek where c=N order by b limit 1;

复制代码

我给你的问题是,这位同事的解释对吗,为了这两个查询模式,这两个索引是否都是必须的?为什么呢?

你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是,通过两个 alter 语句重建索引 k,以及通过两个 alter 语句重建主键索引是否合理。

在评论区,有同学问到为什么要重建索引。我们文章里面有提到,索引可能因为删除,或者页分裂等原因,导致数据页有空洞,重建索引的过程会创建一个新的索引,把数据按顺序插入,这样页面的利用率最高,也就是索引更紧凑、更省空间。

这道题目,我给你的“参考答案”是:

重建索引 k 的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句,你可以用这个语句代替 : alter table T engine=InnoDB。在专栏的第 12 篇文章《为什么表数据删掉一半,表文件大小不变?》中,我会和你分析这条语句的执行流程。

评论区留言中, @壹笙☞漂泊 做了很详细的笔记,@高枕 帮同学解答了问题,@约书亚 提了一个很不错的面试问题。在这里,我要和你们道一声感谢。

PS:如果你在面试中,曾有过被 MySQL 相关问题难住的经历,也可以把这个问题发到评论区,我们一起来讨论。如果解答这个问题,需要的篇幅会很长的话,我可以放到答疑文章展开。

极客时间版权所有: https://time.geekbang.org/column/139

02 | 基础篇:到底应该怎么理解“平均负载”

每次发现系统变慢时,我们通常做的第一件事,就是执行 top 或者 uptime 命令,来了解系统的负载情况。比如像下面这样,我在命令行里输入了 uptime 命令,系统也随即给出了结果。

1
2
$ uptime
02:34:03 up 2 days, 20:14, 1 user, load average: 0.63, 0.83, 0.88

但我想问的是,你真的知道这里每列输出的含义吗?

我相信你对前面的几列比较熟悉,它们分别是当前时间、系统运行时间以及正在登录用户数。

1
2
3
02:34:03              // 当前时间
up 2 days, 20:14 // 系统运行时间
1 user // 正在登录用户数

而最后三个数字呢,依次则是过去 1 分钟、5 分钟、15 分钟的平均负载(Load Average)。

平均负载?这个词对很多人来说,可能既熟悉又陌生,我们每天的工作中,也都会提到这个词,但你真正理解它背后的含义吗?如果你们团队来了一个实习生,他揪住你不放,你能给他讲清楚什么是平均负载吗?

其实,6 年前,我就遇到过这样的一个场景。公司一个实习生一直追问我,什么是平均负载,我支支吾吾半天,最后也没能解释明白。明明总看到也总会用到,怎么就说不明白呢?后来我静下来想想,其实还是自己的功底不够。

于是,这几年,我遇到问题,特别是基础问题,都会多问自己几个“为什么”,以求能够彻底理解现象背后的本质原理,用起来更灵活,也更有底气。

今天,我就带你来学习下,如何观测和理解这个最常见、也是最重要的系统指标。

我猜一定有人会说,平均负载不就是单位时间内的 CPU 使用率吗?上面的 0.63,就代表 CPU 使用率是 63%。其实并不是这样,如果你方便的话,可以通过执行 man uptime 命令,来了解平均负载的详细解释。

简单来说,平均负载是指单位时间内,系统处于可运行状态不可中断状态的平均进程数,也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。这里我先解释下,可运行状态和不可中断状态这俩词儿。

所谓可运行状态的进程,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态(Running 或 Runnable)的进程。

不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态(Uninterruptible Sleep,也称为 Disk Sleep)的进程。

比如,当一个进程向磁盘读写数据时,为了保证数据的一致性,在得到磁盘回复前,它是不能被其他进程或者中断打断的,这个时候的进程就处于不可中断状态。如果此时的进程被打断了,就容易出现磁盘数据与进程数据不一致的问题。

所以,不可中断状态实际上是系统对进程和硬件设备的一种保护机制。

因此,你可以简单理解为,平均负载其实就是平均活跃进程数。平均活跃进程数,直观上的理解就是单位时间内的活跃进程数,但它实际上是活跃进程数的指数衰减平均值。这个“指数衰减平均”的详细含义你不用计较,这只是系统的一种更快速的计算方式,你把它直接当成活跃进程数的平均值也没问题。

既然平均的是活跃进程数,那么最理想的,就是每个 CPU 上都刚好运行着一个进程,这样每个 CPU 都得到了充分利用。比如当平均负载为 2 时,意味着什么呢?

  • 在只有 2 个 CPU 的系统上,意味着所有的 CPU 都刚好被完全占用。
  • 在 4 个 CPU 的系统上,意味着 CPU 有 50% 的空闲。
  • 而在只有 1 个 CPU 的系统中,则意味着有一半的进程竞争不到 CPU。

平均负载为多少时合理

讲完了什么是平均负载,现在我们再回到最开始的例子,不知道你能否判断出,在 uptime 命令的结果里,那三个时间段的平均负载数,多大的时候能说明系统负载高?或是多小的时候就能说明系统负载很低呢?

我们知道,平均负载最理想的情况是等于 CPU 个数。所以在评判平均负载时,首先你要知道系统有几个 CPU,这可以通过 top 命令或者从文件 /proc/cpuinfo 中读取,比如:

1
2
3
# 关于 grep 和 wc 的用法请查询它们的手册或者网络搜索
$ grep 'model name' /proc/cpuinfo | wc -l
2

有了 CPU 个数,我们就可以判断出,当平均负载比 CPU 个数还大的时候,系统已经出现了过载。

不过,且慢,新的问题又来了。我们在例子中可以看到,平均负载有三个数值,到底该参考哪一个呢?

实际上,都要看。三个不同时间间隔的平均值,其实给我们提供了,分析系统负载趋势的数据来源,让我们能更全面、更立体地理解目前的负载状况。

打个比方,就像初秋时北京的天气,如果只看中午的温度,你可能以为还在 7 月份的大夏天呢。但如果你结合了早上、中午、晚上三个时间点的温度来看,基本就可以全方位了解这一天的天气情况了。

同样的,前面说到的 CPU 的三个负载时间段也是这个道理。

  • 如果 1 分钟、5 分钟、15 分钟的三个值基本相同,或者相差不大,那就说明系统负载很平稳。
  • 但如果 1 分钟的值远小于 15 分钟的值,就说明系统最近 1 分钟的负载在减少,而过去 15 分钟内却有很大的负载。
  • 反过来,如果 1 分钟的值远大于 15 分钟的值,就说明最近 1 分钟的负载在增加,这种增加有可能只是临时性的,也有可能还会持续增加下去,所以就需要持续观察。一旦 1 分钟的平均负载接近或超过了 CPU 的个数,就意味着系统正在发生过载的问题,这时就得分析调查是哪里导致的问题,并要想办法优化了。

这里我再举个例子,假设我们在一个单 CPU 系统上看到平均负载为 1.73,0.60,7.98,那么说明在过去 1 分钟内,系统有 73% 的超载,而在 15 分钟内,有 698% 的超载,从整体趋势来看,系统的负载在降低。

那么,在实际生产环境中,平均负载多高时,需要我们重点关注呢?

在我看来,当平均负载高于 CPU 数量 70% 的时候,你就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。

但 70% 这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。

平均负载与 CPU 使用率

现实工作中,我们经常容易把平均负载和 CPU 使用率混淆,所以在这里,我也做一个区分。

可能你会疑惑,既然平均负载代表的是活跃进程数,那平均负载高了,不就意味着 CPU 使用率高吗?

我们还是要回到平均负载的含义上来,平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU等待 I/O 的进程。

而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:

  • CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
  • I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
  • 大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。

平均负载案例分析

下面,我们以三个示例分别来看这三种情况,并用 iostat、mpstat、pidstat 等工具,找出平均负载升高的根源。

因为案例分析都是基于机器上的操作,所以不要只是听听、看看就够了,最好还是跟着我实际操作一下。

你的准备

下面的案例都是基于 Ubuntu 18.04,当然,同样适用于其他 Linux 系统。我使用的案例环境如下所示。

  • 机器配置:2 CPU,8GB 内存。
  • 预先安装 stress 和 sysstat 包,如 apt install stress sysstat。

在这里,我先简单介绍一下 stress 和 sysstat。

stress 是一个 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。

而 sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。我们的案例会用到这个包的两个命令 mpstat 和 pidstat。

  • mpstat 是一个常用的多核 CPU 性能分析工具,用来实时查看每个 CPU 的性能指标,以及所有 CPU 的平均指标。
  • pidstat 是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。

此外,每个场景都需要你开三个终端,登录到同一台 Linux 机器中。

实验之前,你先做好上面的准备。如果包的安装有问题,可以先在 Google 一下自行解决,如果还是解决不了,再来留言区找我,这事儿应该不难。

另外要注意,下面的所有命令,我们都是默认以 root 用户运行。所以,如果你是用普通用户登陆的系统,一定要先运行 sudo su root 命令切换到 root 用户。

如果上面的要求都已经完成了,你可以先用 uptime 命令,看一下测试前的平均负载情况:

1
2
$ uptime
..., load average: 0.11, 0.15, 0.09

场景一:CPU 密集型进程

首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:

1
$ stress --cpu 1 --timeout 600

接着,在第二个终端运行 uptime 查看平均负载的变化情况:

1
2
3
# -d 参数表示高亮显示变化的区域
$ watch -d uptime
..., load average: 1.00, 0.75, 0.39

最后,在第三个终端运行 mpstat 查看 CPU 使用率的变化情况:

1
2
3
4
5
6
7
# -P ALL 表示监控所有 CPU,后面数字 5 表示间隔 5 秒后输出一组数据
$ mpstat -P ALL 5
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:30:06 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
13:30:11 all 50.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 49.95
13:30:11 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
13:30:11 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高正是由于 CPU 使用率为 100% 。

那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?你可以使用 pidstat 来查询:

1
2
3
4
# 间隔 5 秒后输出一组数据
$ pidstat -u 5 1
13:37:07 UID PID %usr %system %guest %wait %CPU CPU Command
13:37:12 0 2962 100.00 0.00 0.00 0.00 100.00 1 stress

从这里可以明显看到,stress 进程的 CPU 使用率为 100%。

场景二:I/O 密集型进程

首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync:

1
$ stress -i 1 --timeout 600

还是在第二个终端运行 uptime 查看平均负载的变化情况:

1
2
$ watch -d uptime
..., load average: 1.06, 0.58, 0.37

然后,第三个终端运行 mpstat 查看 CPU 使用率的变化情况:

1
2
3
4
5
6
7
# 显示所有 CPU 的指标,并在间隔 5 秒输出一组数据
$ mpstat -P ALL 5 1
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:41:28 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
13:41:33 all 0.21 0.00 12.07 32.67 0.00 0.21 0.00 0.00 0.00 54.84
13:41:33 0 0.43 0.00 23.87 67.53 0.00 0.43 0.00 0.00 0.00 7.74
13:41:33 1 0.00 0.00 0.81 0.20 0.00 0.00 0.00 0.00 0.00 98.99

从这里可以看到,1 分钟的平均负载会慢慢增加到 1.06,其中一个 CPU 的系统 CPU 使用率升高到了 23.87,而 iowait 高达 67.53%。这说明,平均负载的升高是由于 iowait 的升高。

那么到底是哪个进程,导致 iowait 这么高呢?我们还是用 pidstat 来查询:

1
2
3
4
5
6
7
8
# 间隔 5 秒后输出一组数据,-u 表示 CPU 指标
$ pidstat -u 5 1
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:42:08 UID PID %usr %system %guest %wait %CPU CPU Command
13:42:13 0 104 0.00 3.39 0.00 0.00 3.39 1 kworker/1:1H
13:42:13 0 109 0.00 0.40 0.00 0.00 0.40 0 kworker/0:1H
13:42:13 0 2997 2.00 35.53 0.00 3.99 37.52 1 stress
13:42:13 0 3057 0.00 0.40 0.00 0.00 0.40 0 pidstat

可以发现,还是 stress 进程导致的。

场景三:大量进程的场景

当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。

比如,我们还是使用 stress,但这次模拟的是 8 个进程:

1
$ stress -c 8 --timeout 600

由于系统只有 2 个 CPU,明显比 8 个进程要少得多,因而,系统的 CPU 处于严重过载状态,平均负载高达 7.97:

1
2
$ uptime
..., load average: 7.97, 5.93, 3.02

接着再运行 pidstat 来看一下进程的情况:

1
2
3
4
5
6
7
8
9
10
11
12
# 间隔 5 秒后输出一组数据
$ pidstat -u 5 1
14:23:25 UID PID %usr %system %guest %wait %CPU CPU Command
14:23:30 0 3190 25.00 0.00 0.00 74.80 25.00 0 stress
14:23:30 0 3191 25.00 0.00 0.00 75.20 25.00 0 stress
14:23:30 0 3192 25.00 0.00 0.00 74.80 25.00 1 stress
14:23:30 0 3193 25.00 0.00 0.00 75.00 25.00 1 stress
14:23:30 0 3194 24.80 0.00 0.00 74.60 24.80 0 stress
14:23:30 0 3195 24.80 0.00 0.00 75.00 24.80 0 stress
14:23:30 0 3196 24.80 0.00 0.00 74.60 24.80 1 stress
14:23:30 0 3197 24.80 0.00 0.00 74.80 24.80 1 stress
14:23:30 0 3200 0.00 0.20 0.00 0.20 0.20 0 pidstat

可以看出,8 个进程在争抢 2 个 CPU,每个进程等待 CPU 的时间(也就是代码块中的 %wait 列)高达 75%。这些超出 CPU 计算能力的进程,最终导致 CPU 过载。

小结

分析完这三个案例,我再来归纳一下平均负载的理解。

平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。所以,在理解平均负载时,也要注意:

  • 平均负载高有可能是 CPU 密集型进程导致的;
  • 平均负载高并不一定代表 CPU 使用率高,还有可能是 I/O 更繁忙了;
  • 当发现负载高的时候,你可以使用 mpstat、pidstat 等工具,辅助分析负载的来源。

04 | 深入浅出索引(上)

提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个 SQL 查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。

数据库索引的内容比较多,我分成了上下两篇文章。索引是数据库系统里面最重要的概念之一,所以我希望你能够耐心看完。在后面的实战文章中,我也会经常引用这两篇文章中提到的知识点,加深你对数据库索引的理解。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本 500 页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。

索引的常见模型

索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

下面我主要从使用的角度,为你简单分析一下这三种模型的区别。

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

img

图 1 哈希表示意图

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在 [ID_card_X, ID_card_Y] 这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

img

图 2 有序数组示意图

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在 [ID_card_X, ID_card_Y] 区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

img

图 3 二叉搜索树示意图

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者 N 叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM 树等数据结构也被用于引擎设计中,这里我就不再一一展开了。

你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。

现在,我们一起进入相对偏实战的内容吧。

在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于 InnoDB 存储引擎在 MySQL 数据库中使用最为广泛,所以下面我就以 InnoDB 为例,和你分析一下其中的索引模型。

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。

这个表的建表语句是:

1
2
3
4
5
mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。

img

图 4 InnoDB 的索引组织结构

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

  1. 只有一个索引;
  2. 该索引必须是唯一索引。

你一定看出来了,这就是典型的 KV 场景。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

小结

今天,我跟你分析了数据库引擎可用的数据结构,介绍了 InnoDB 采用的 B+ 树结构,以及为什么 InnoDB 要这么选择。B+ 树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。

由于 InnoDB 是索引组织表,一般情况下我会建议你创建一个自增主键,这样非主键索引占用的空间最小。但事无绝对,我也跟你讨论了使用业务逻辑字段做主键的应用场景。

最后,我给你留下一个问题吧。对于上面例子中的 InnoDB 表 T,如果你要重建索引 k,你的两个 SQL 语句可以这么写:

1
2
alter table T drop index k;
alter table T add index(k);

如果你要重建主键索引,也可以这么写:

1
2
alter table T drop primary key;
alter table T add primary key(id);

我的问题是,对于上面这两个重建索引的作法,说出你的理解。如果有不合适的,为什么,更好的方法是什么?

你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾给出我的参考答案。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章末尾给你留下的问题是:如何避免长事务对业务的影响?

这个问题,我们可以从应用开发端和数据库端来看。

首先,从应用开发端来看:

  1. 确认是否使用了 set autocommit=0。这个确认工作可以在测试环境中开展,把 MySQL 的 general_log 开起来,然后随便跑一个业务逻辑,通过 general_log 的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成 1。
  2. 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用 begin/commit 框起来。我见过有些是业务并没有这个需要,但是也把好几个 select 语句放到了事务中。这种只读事务可以去掉。
  3. 业务连接数据库的时候,根据业务本身的预估,通过 SET MAX_EXECUTION_TIME 命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。(为什么会意外?在后续的文章中会提到这类案例)

其次,从数据库端来看:

  1. 监控 information_schema.Innodb_trx 表,设置长事务阈值,超过就报警 / 或者 kill;
  2. Percona 的 pt-kill 这个工具不错,推荐使用;
  3. 在业务功能测试阶段要求输出所有的 general_log,分析日志行为提前发现问题;
  4. 如果使用的是 MySQL 5.6 或者更新版本,把 innodb_undo_tablespaces 设置成 2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。

极客时间版权所有:https://time.geekbang.org/column/article/69236